Note: Sharp Upper and Lower Bounds on the Number of Spanning Trees in Cartesian Product of Graphs
Jernej Azarija
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 785-790 / Harvested from The Polish Digital Mathematics Library

Let G1 and G2 be simple graphs and let n1 = |V (G1)|, m1 = |E(G1)|, n2 = |V (G2)| and m2 = |E(G2)|. In this paper we derive sharp upper and lower bounds for the number of spanning trees τ in the Cartesian product G1 □G2 of G1 and G2. We show that: [...] and [...] . We also characterize the graphs for which equality holds. As a by-product we derive a formula for the number of spanning trees in Kn1 □Kn2 which turns out to be [...] .

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268315
@article{bwmeta1.element.doi-10_7151_dmgt_1698,
     author = {Jernej Azarija},
     title = {Note: Sharp Upper and Lower Bounds on the Number of Spanning Trees in Cartesian Product of Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {785-790},
     zbl = {1295.05199},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1698}
}
Jernej Azarija. Note: Sharp Upper and Lower Bounds on the Number of Spanning Trees in Cartesian Product of Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 785-790. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1698/

[1] R.B. Bapat and S. Gupta, Resistance distance in wheels and fans, Indian J. Pure Appl. Math. 41 (2010) 1-13.[WoS] | Zbl 1203.05041

[2] Z. Bogdanowicz, Formulas for the number of spanning trees in a fan, Appl. Math. Sci. 16 (2008) 781-786. | Zbl 1166.05015

[3] F.T. Boesch, On unreliabillity polynomials and graph connectivity in reliable network synthesis, J. Graph Theory 10 (1986) 339-352. doi:10.1002/jgt.3190100311 | Zbl 0699.90041

[4] R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab. 21 (1993) 1329-1371. doi:10.1214/aop/1176989121[Crossref] | Zbl 0785.60007

[5] G.A. Cayley, A theorem on trees, Quart. J. Math 23 (1889) 276-378. doi:10.1017/CBO9780511703799.010[Crossref]

[6] M.H.S. Haghighi and K. Bibak, Recursive relations for the number of spanning trees, Appl. Math. Sci. 46 (2009) 2263-2269. | Zbl 1205.05050

[7] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, 2nd Edition (CRC press, 2011). | Zbl 1283.05001

[8] G.G. Kirchhoff, ¨Uber die Aufl¨osung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Strome gefhrt wird, Ann. Phy. Chem. 72 (1847) 497-508. doi:10.1002/andp.18471481202[Crossref]

[9] B. Mohar, The laplacian spectrum of graphs, in: Graph Theory, Combinatorics, and Applications (Wiley, 1991). | Zbl 0840.05059

[10] R. Shrock and F.Y. Wu, Spanning trees on graphs and lattices in d dimensions, J. Phys. A 33 (2000) 3881-3902. doi:10.1088/0305-4470/33/21/303 [Crossref] | Zbl 0949.05041