Rainbow Connection Number of Dense Graphs
Xueliang Li ; Mengmeng Liu ; Ingo Schiermeyer
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 603-611 / Harvested from The Polish Digital Mathematics Library

An edge-colored graph G is rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this paper we show that rc(G) ≤ 3 if |E(G)| ≥ [...] + 2, and rc(G) ≤ 4 if |E(G)| ≥ [...] + 3. These bounds are sharp.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267532
@article{bwmeta1.element.doi-10_7151_dmgt_1692,
     author = {Xueliang Li and Mengmeng Liu and Ingo Schiermeyer},
     title = {Rainbow Connection Number of Dense Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {603-611},
     zbl = {1275.05022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1692}
}
Xueliang Li; Mengmeng Liu; Ingo Schiermeyer. Rainbow Connection Number of Dense Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 603-611. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1692/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).

[2] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98. | Zbl 1199.05106

[3] A.B. Ericksen, A matter of security, Graduating Engineer & Computer Careers (2007) 24-28.

[4] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Disscuss. Math. Graph Theory 31 (2011) 313-320. doi:10.7151/dmgt.1547[Crossref]

[5] X. Li and Y. Sun, Rainbow Connections of Graphs (SpringerBriefs in Math., Springer, New York, 2012). doi:10.1007/978-1-4614-3119-0 [Crossref]