An edge coloring of a plane graph G is facially proper if no two faceadjacent edges of G receive the same color. A facial (facially proper) parity edge coloring of a plane graph G is an (facially proper) edge coloring with the property that, for each color c and each face f of G, either an odd number of edges incident with f is colored with c, or color c does not occur on the edges of f. In this paper we deal with the following question: For which integers k does there exist a facial (facially proper) parity edge coloring of a plane graph G with exactly k colors?
@article{bwmeta1.element.doi-10_7151_dmgt_1690, author = {J\'ulius Czap and Zsolt Tuza}, title = {Decompositions of Plane Graphs Under Parity Constrains Given by Faces}, journal = {Discussiones Mathematicae Graph Theory}, volume = {33}, year = {2013}, pages = {521-530}, zbl = {1275.05014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1690} }
Július Czap; Zsolt Tuza. Decompositions of Plane Graphs Under Parity Constrains Given by Faces. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 521-530. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1690/
[1] J. Czap, S. Jendroľ, F. Kardoš and R. Sotak, Facial parity edge coloring of plane pseudographs, Discrete Math. 312 (2012) 2735-2740. doi:10.1016/j.disc.2012.03.036[Crossref][WoS] | Zbl 1245.05044
[2] J. Czap and Zs. Tuza, Partitions of graphs and set systems under parity constraints, preprint (2011).
[3] D. Gon,calves, Edge partition of planar graphs into two outerplanar graphs, Proceedings of the 37th Annual ACM Symposium on Theory of Computing (2005) 504-512. doi:10.1145/1060590.1060666[Crossref]
[4] S. Grunewald, Chromatic index critical graphs and multigraphs, PhD Thesis, Universitat Bielefeld (2000). | Zbl 0947.05030
[5] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Cas. SAV (Math. Slovaca) 5 (1955) 101-113 (in Slovak).
[6] T. Matrai, Covering the edges of a graph by three odd subgraphs, J. Graph Theory 53 (2006) 75-82. doi:10.1002/jgt.20170[Crossref] | Zbl 1098.05067
[7] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964) 12-12. doi:10.1112/jlms/s1-39.1.12[Crossref] | Zbl 0119.38805
[8] L. Pyber, Covering the edges of a graph by . . . , Colloquia Mathematica Societatis Janos Bolyai, 60. Sets, Graphs and Numbers (1991) 583-610. | Zbl 0792.05110
[9] D.P. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin. Theory (B) 83 (2001) 201-212. doi:10.1006/jctb.2001.2047[Crossref] | Zbl 1024.05031
[10] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964) 25-30.
[11] L. Zhang, Every planar graph with maximum degree 7 is class I, Graphs Combin. 16 (2000) 467-495. doi:10.1007/s003730070009 [Crossref] | Zbl 0988.05042