Fractional Q-Edge-Coloring of Graphs
Július Czap ; Peter Mihók
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 509-519 / Harvested from The Polish Digital Mathematics Library

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let [...] be an additive hereditary property of graphs. A [...] -edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property [...] . In this paper we present some results on fractional [...] -edge-colorings. We determine the fractional [...] -edge chromatic number for matroidal properties of graphs.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267979
@article{bwmeta1.element.doi-10_7151_dmgt_1685,
     author = {J\'ulius Czap and Peter Mih\'ok},
     title = {Fractional Q-Edge-Coloring of Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {509-519},
     zbl = {1274.05153},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1685}
}
Július Czap; Peter Mihók. Fractional Q-Edge-Coloring of Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 509-519. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1685/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008). doi:10.1007/978-1-84628-970-5[Crossref]

[2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540[Crossref] | Zbl 1234.05076

[3] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270. doi:10.7151/dmgt.1174[Crossref] | Zbl 1030.05038

[4] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349-359. doi:10.7151/dmgt.1180[Crossref] | Zbl 1030.05039

[5] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Nat.Bur. Standards 69B (1965) 125-130. | Zbl 0141.21802

[6] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory, accepted. | Zbl 06323187

[7] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová and R. Soták, Generalized fractional and circular total coloring of graphs, preprint. | Zbl 1317.05060

[8] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435-440. doi:10.1007/BF01303515[Crossref] | Zbl 0795.05056

[9] P. Mihók, On graphs matroidal with respect to additive hereditary properties, Graphs, Hypergraphs and Matroids II, Zielona Góra (1987) 53-64.

[10] P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77. | Zbl 0951.05035

[11] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).

[12] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, 1997). | Zbl 0891.05003

[13] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93-97. doi:10.1016/0012-365X(79)90072-4[Crossref]

[14] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits, Proc. Amer. Math. Soc. 38 (1973) 503-506. doi:10.2307/2038939 [Crossref] | Zbl 0264.05126