The Crossing Numbers of Products of Path with Graphs of Order Six
Marián Klešč ; Jana Petrillová
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 571-582 / Harvested from The Polish Digital Mathematics Library

The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. For the path Pn of length n, the crossing numbers of Cartesian products G⃞Pn for all connected graphs G on five vertices are also known. In this paper, the crossing numbers of Cartesian products G⃞Pn for graphs G of order six are studied. Let H denote the unique tree of order six with two vertices of degree three. The main contribution is that the crossing number of the Cartesian product H⃞Pn is 2(n − 1). In addition, the crossing numbers of G⃞Pn for fourty graphs G on six vertices are collected

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267699
@article{bwmeta1.element.doi-10_7151_dmgt_1684,
     author = {Mari\'an Kle\v s\v c and Jana Petrillov\'a},
     title = {The Crossing Numbers of Products of Path with Graphs of Order Six},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {571-582},
     zbl = {1273.05048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1684}
}
Marián Klešč; Jana Petrillová. The Crossing Numbers of Products of Path with Graphs of Order Six. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 571-582. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1684/

[1] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four , J. Graph Theory 4 (1980) 145-155. doi:10.1002/jgt.3190040203[Crossref] | Zbl 0403.05037

[2] D. Bokal, On the crossing number of Cartesian products with paths, J. Combin. Theory (B) 97 (2007) 381-384. doi:10.1016/j.jctb.2006.06.003[Crossref] | Zbl 1113.05027

[3] S. Jendrol’ and M. Ščerbová, On the crossing numbers of Sm × Pn and Sm × Cn, ˇ Casopis Pro P ˇ estov´ an´ı Matematiky 107 ( 1982) 225-230. | Zbl 0509.05035

[4] M. Klešč, The crossing numbers of Cartesian products of stars and paths or cycles, Math. Slovaca 41 (1991) 113-120. | Zbl 0755.05067

[5] M. Klešč, The crossing numbers of products of paths and stars with 4-vertex graphs, J. Graph Theory 18 (1994) 605-614. | Zbl 0808.05038

[6] M. Klešč, The crossing number of K2,3 ×Pn and K2,3 ×Sn, Tatra Mt. Math. Publ. 9 (1996) 51-56.

[7] M. Klešč, The crossing numbers of products of 4-vertex graphs with paths and cycles, Discuss. Math. Graph Theory 19 (1999) 59-69. doi:10.7151/dmgt.1085[Crossref]

[8] M. Klešč, The crossing numbers of Cartesian products of paths with 5-vertex graphs, Discrete Math. 233 (2001) 353-359. doi:10.1016/S0012-365X(00)00251-X[Crossref][WoS] | Zbl 0983.05027

[9] D. Kravecová, The crossing number of P2 5 × Pn, Creat. Math. Inform. 28 (2012) 49-56.

[10] Y.H. Peng and Y.C. Yiew, The crossing number of P(3, 1)×Pn, Discrete Math. 306 (2006) 1941-1946. doi:10.1016/j.disc.2006.03.058[Crossref]

[11] J. Wang and Y. Huang, The crossing number of K2,4 ×Pn, Acta Math. Sci.,Ser. A, Chin. Ed. 28 (2008) 251-255.

[12] L. Zhao, W. He, Y. Liu and X. Ren, The crossing number of two Cartesian products, Int. J. Math. Comb. 1 (2007) 120-127. | Zbl 1140.05025

[13] W. Zheng, X. Lin, Y. Yang and Ch. Cui, On the crossing number of Km⃞Pn, Graphs Combin. 23 (2007) 327-336. doi:10.1007/s00373-007-0726-z [Crossref]