The Path-Distance-Width of Hypercubes
Yota Otachi
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 467-470 / Harvested from The Polish Digital Mathematics Library

The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267889
@article{bwmeta1.element.doi-10_7151_dmgt_1682,
     author = {Yota Otachi},
     title = {The Path-Distance-Width of Hypercubes},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {467-470},
     zbl = {1293.05086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1682}
}
Yota Otachi. The Path-Distance-Width of Hypercubes. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 467-470. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1682/

[1] S.L. Bezrukov and U. Leck, A simple proof of the Karakhanyan-Riordan theorem on the even discrete torus, SIAM J. Discrete Math. 23 (2009) 1416-1421. doi:10.1137/080715081[Crossref][WoS] | Zbl 1214.05053

[2] B. Bollobás and I. Leader, Compressions and isoperimetric inequalities, J. Combin. Theory (A) 56 (1991) 47-62. doi:10.1016/0097-3165(91)90021-8[Crossref]

[3] L.S. Chandran and T. Kavitha, The treewidth and pathwidth of hypercubes, Discrete Math. 306 (2006) 359-365. doi:10.1016/j.disc.2005.12.011[Crossref] | Zbl 1083.05034

[4] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1 (1966) 385-393. doi:10.1016/S0021-9800(66)80059-5[Crossref] | Zbl 0158.20802

[5] H. Kaplan and R. Shamir, Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques, SIAM J. Comput. 25 (1996) 540-561. doi:10.1137/S0097539793258143[Crossref] | Zbl 0852.68072

[6] D.J. Kleitman, On a problem of Yuzvinsky on separating the n-cube, Discrete Math. 60 (1986) 207-213. doi:10.1016/0012-365X(86)90013-0[Crossref]

[7] H.S. Moghadam, Bandwidth of the product of n paths, Congr. Numer. 173 (2005) 3-15. | Zbl 1093.05061

[8] Y. Otachi, T. Saitoh, K. Yamanaka, S. Kijima, Y. Okamoto, H. Ono, Y. Uno and K. Yamazaki, Approximability of the path-distance-width for AT-free graphs, Lecture Notes in Comput. Sci., WG 2011 6986 (2011) 271-282. doi:10.1007/978-3-642-25870-1 25[Crossref] | Zbl 05988785

[9] O. Riordan, An ordering on the even discrete torus, SIAM J. Discrete Math. 11 (1998) 110-127. doi:10.1137/S0895480194278234[Crossref] | Zbl 0914.05038

[10] K. Yamazaki, On approximation intractability of the path-distance-width problem, Discrete Appl. Math. 110 (2001) 317-325. doi:10.1016/S0166-218X(00)00275-4[Crossref]

[11] K. Yamazaki, H.L. Bodlaender, B. de Fluiter, and D.M. Thilikos, Isomorphism for graphs of bounded distance width, Algorithmica 24 (1999) 105-127. doi:10.1007/PL00009273[Crossref] | Zbl 0934.68071