Bipartite graphs with equal edge domination number and maximum matching cardinality are characterized. These two parameters are used to develop bounds on the vertex cover and total vertex cover numbers of graphs and a resulting chain of vertex covering, edge domination, and matching parameters is explored. In addition, the total vertex cover number is compared to the total domination number of trees and grid graphs.
@article{bwmeta1.element.doi-10_7151_dmgt_1681, author = {Ronald Dutton and William F. Klostermeyer}, title = {Edge Dominating Sets and Vertex Covers}, journal = {Discussiones Mathematicae Graph Theory}, volume = {33}, year = {2013}, pages = {437-456}, zbl = {1300.05217}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1681} }
Ronald Dutton; William F. Klostermeyer. Edge Dominating Sets and Vertex Covers. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 437-456. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1681/
[1] S. Arumugam and S. Velammal, Edge Domination in Graphs, Taiwanese J. Math. 2 (1998) 173-179. | Zbl 0906.05032
[2] G. Chatrand, L. Lesniak and P. Zhang, Graphs and Digraphs (Chapman Hall/CRC, 2004).
[3] R. Dutton, Total vertex covers, Bull. Inst. Combin. Appl., to appear. | Zbl 1270.05080
[4] H. Fernau and D.F. Manlove, Vertex and edge covers with clustering properties: complexity and algorithms, in: Algorithms and Complexity in Durham ACID 2006 (King’s College, London, 2006) 69-84.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[6] W. Klostermeyer, Some questions on graph protection, Graph Theory Notes N.Y. 57 (2010) 29-33.
[7] J.R. Lewis, Vertex-edge and edge-vertex parameters in graphs, Ph.D. Disseration (Clemson University, 2007).