Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
Mustapha Chellali ; Nader Jafari Rad
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 337-346 / Harvested from The Polish Digital Mathematics Library

A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = P u2V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number R(G) (respectively, the independent Roman domination number iR(G)) is the minimum weight of an RDF (respectively, independent RDF) on G. We say that R(G) strongly equals iR(G), denoted by R(G) ≡ iR(G), if every RDF on G of minimum weight is independent. In this paper we provide a constructive characterization of trees T with R(T) ≡ iR(T).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268140
@article{bwmeta1.element.doi-10_7151_dmgt_1669,
     author = {Mustapha Chellali and Nader Jafari Rad},
     title = {Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {337-346},
     zbl = {1293.05258},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1669}
}
Mustapha Chellali; Nader Jafari Rad. Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 337-346. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1669/

[1] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22. doi:10.1016/j.disc.2003.06.004[Crossref] | Zbl 1036.05034

[2] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77-87. doi:10.1016/S0012-365X(02)00451-X[Crossref] | Zbl 1020.05051

[3] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111-124. | Zbl 0980.05038

[4] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206. doi:10.1002/(SICI)1097-0037(199810)32:3h199::AID-NET4i3.0.CO;2-F[Crossref] | Zbl 0997.05074

[5] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 325-334. doi:10.7151/dmgt.1178[Crossref]

[6] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115. doi:10.1016/S0012-365X(03)00040-2[Crossref]

[7] N. Jafari Rad and L. Volkmann, Changing and unchanging the Roman domination number of a graph, Util. Math. 89 (2012) 79-95. | Zbl 1273.05162