A Note on the Uniqueness of Stable Marriage Matching
Ewa Drgas-Burchardt
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 49-55 / Harvested from The Polish Digital Mathematics Library

In this note we present some sufficient conditions for the uniqueness of a stable matching in the Gale-Shapley marriage classical model of even size. We also state the result on the existence of exactly two stable matchings in the marriage problem of odd size with the same conditions.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267608
@article{bwmeta1.element.doi-10_7151_dmgt_1667,
     author = {Ewa Drgas-Burchardt},
     title = {A Note on the Uniqueness of Stable Marriage Matching},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {49-55},
     zbl = {1293.05289},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1667}
}
Ewa Drgas-Burchardt. A Note on the Uniqueness of Stable Marriage Matching. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 49-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1667/

[1] E. Drgas-Burchardt and Z. Świtalski, A number of stable matchings in models of the Gale-Shapley type, manuscript.[WoS] | Zbl 1285.91101

[2] J. Eeckhout, On the uniqueness of stable marriage matchings, Econom. Lett. 69 (2000) 1-8. doi:10.1016/S0165-1765(00)00263-9[WoS][Crossref] | Zbl 0960.91052

[3] D. Gale, The two-sided matching problem: origin, development and current issues, Int. Game Theory Rev. 3 (2001) 237-252. doi:10.1142/S0219198901000373[Crossref] | Zbl 1127.91372

[4] D. Gale and L.S. Shapley, College admissions and the stability of marriage, Amer. Math. Monthly 69 (1962) 9-15. doi:10.2307/2312726[Crossref] | Zbl 0109.24403

[5] R.W. Irving and P. Leather, The complexity of counting stable marriages, SIAM J. Comput. 15 (1986) 655-667. doi:10.1137/0215048[Crossref] | Zbl 0611.68015

[6] D.E. Knuth, Mariages Stables (Less Presses de l’Universite de Montreal, Montreal, 1976).

[7] D.E. Knuth, Stable Marriage and Its Relation to other Combinatorial Problems. An Introduction to the Mathematical Analysis of Algorithms (American Mathematical Society, Providence, Rhode Island, 1997).