Distance-Locally Disconnected Graphs
Mirka Miller ; Joe Ryan ; Zdeněk Ryjáček
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 203-215 / Harvested from The Polish Digital Mathematics Library

For an integer k ≥ 1, we say that a (finite simple undirected) graph G is k-distance-locally disconnected, or simply k-locally disconnected if, for any x ∈ V (G), the set of vertices at distance at least 1 and at most k from x induces in G a disconnected graph. In this paper we study the asymptotic behavior of the number of edges of a k-locally disconnected graph on n vertices. For general graphs, we show that this number is Θ(n2) for any fixed value of k and, in the special case of regular graphs, we show that this asymptotic rate of growth cannot be achieved. For regular graphs, we give a general upper bound and we show its asymptotic sharpness for some values of k. We also discuss some connections with cages.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:268130
@article{bwmeta1.element.doi-10_7151_dmgt_1657,
     author = {Mirka Miller and Joe Ryan and Zden\v ek Ryj\'a\v cek},
     title = {Distance-Locally Disconnected Graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {203-215},
     zbl = {1293.05168},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1657}
}
Mirka Miller; Joe Ryan; Zdeněk Ryjáček. Distance-Locally Disconnected Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 203-215. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1657/

[1] J.A. Bondy, U.S.R. Murty, Graph Theory (Springer, NewYork, 2008). doi:10.1007/978-1-84628-970-5[Crossref]

[2] G. Exoo and R. Jajcay, Dynamic cage survey, Electron. J. Combin. 18 (2011) #DS16. | Zbl 1169.05336

[3] F. Lazebnik, V.A. Ustimenko and A.J. Woldar, New upper bounds on the order of cages, Electron. J. Combin. 4(2) (1977) R13. | Zbl 0885.05078

[4] L. Lovász, J. Pelikán and K. Vesztergombi, Discrete Mathematics: Elementary and Beyond (Springer, NewYork, 2003). | Zbl 1017.00002

[5] Z. Ryjáček, N2-locally disconnected graphs, Discrete Math. 121 (1993) 189-193. doi:10.1016/0012-365X(93)90551-4[Crossref]

[6] Z. Ryjáček and B. Zelinka, Locally disconnected graphs with large numbers of edges, Math. Slovaca 37(2) (1987) 195-198.

[7] B. Zelinka, Two local properties of graphs, ˇ Casop. Pˇest. Mat. 113 (1988) 113-121.