A set of vertices of a graph G is a total dominating set if each vertex of G is adjacent to a vertex in the set. The total domination number of a graph Υt (G) is the minimum size of a total dominating set. We provide a short proof of the result that Υt (G) ≤ 2/3n for connected graphs with n ≥ 3 and a short characterization of the extremal graphs.
@article{bwmeta1.element.doi-10_7151_dmgt_1655, author = {Allan Bickle}, title = {Two Short Proofs on Total Domination}, journal = {Discussiones Mathematicae Graph Theory}, volume = {33}, year = {2013}, pages = {457-459}, zbl = {1293.05255}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1655} }
Allan Bickle. Two Short Proofs on Total Domination. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 457-459. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1655/
[1] R.C. Brigham, J.R. Carrington and R.P. Vitray, Connected graphs with maximum total domination number , J. Combin. Comput. Combin. Math. 34 (2000) 81-96. | Zbl 0958.05100
[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219. doi:10.1002/net.3230100304 | Zbl 0447.05039
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc, 1998). | Zbl 0890.05002