In 1982 Laborde, Payan and Xuong [Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982) 173-177 (Teubner-Texte Math., 59 1983)] conjectured that every digraph has an independent detour transversal (IDT), i.e. an independent set which intersects every longest path. Havet [Stable set meeting every longest path, Discrete Math. 289 (2004) 169-173] showed that the conjecture holds for digraphs with independence number two. A digraph is p-deficient if its order is exactly p more than the order of its longest paths. It follows easily from Havet’s result that for p = 1, 2 every p-deficient digraph has an independent detour transversal. This paper explores the existence of independent detour transversals in 3-deficient digraphs.
@article{bwmeta1.element.doi-10_7151_dmgt_1650, author = {Susan van Aardt and Marietjie Frick and Joy Singleton}, title = {Independent Detour Transversals in 3-Deficient Digraphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {33}, year = {2013}, pages = {261-275}, zbl = {1291.05082}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1650} }
Susan van Aardt; Marietjie Frick; Joy Singleton. Independent Detour Transversals in 3-Deficient Digraphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 261-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1650/
[1] S.A. van Aardt, G. Dlamini, J. Dunbar, M. Frick, and O. Oellermann, The directed path partition conjecture, Discuss. Math. Graph Theory 25 (2005) 331-343. doi:10.7151/dmgt.1286[Crossref] | Zbl 1118.05040
[2] S.A. van Aardt, J.E. Dunbar, M. Frick, P. Katreniˇc, M.H. Nielsen, and O.R. Oellermann, Traceability of k-traceable oriented graphs, Discrete Math. 310 (2010) 1325-1333. doi:10.1016/j.disc.2009.12.022[WoS][Crossref] | Zbl 1195.05030
[3] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer-Verlag, London, 2001). | Zbl 0958.05002
[4] J. Bang-Jensen, M.H. Nielsen and A. Yeo, Longest path partitions in generalizations of tournaments, Discrete Math. 306 (2006) 1830-1839. doi:10.1016/j.disc.2006.03.063[Crossref] | Zbl 1103.05036
[5] J.A. Bondy, Basic graph theory: Paths and circuits, in: Handbook of Combinatorics, R.L. Graham, M. Gr¨otschel and L. Lov´asz (Ed(s)), (The MIT Press, Cambridge, MA, 1995) Vol I, p. 20. | Zbl 0849.05044
[6] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C.R. Acad. Sci. Paris 249 (1959) 2151-2152. | Zbl 0092.15801
[7] C.C. Chen and P. Manalastas Jr., Every finite strongly connected digraph of stability 2 has a Hamiltonian path, Discrete Math. 44 (1983) 243-250. doi:10.1016/0012-365X(83)90188-7 | Zbl 0507.05036
[8] H. Galeana-Sánchez and R. Gómez, Independent sets and non-augmentable paths in generalizations of tournaments, Discrete Math. 308 (2008) 2460-2472. doi:10.1016/j.disc.2007.05.016[Crossref][WoS] | Zbl 1147.05042
[9] H. Galeana-Sánchez and H.A. Rincón-Mejía, Independent sets which meet all longest paths, Discrete Math. 152 (1996) 141-145. doi:10.1016/0012-365X(94)00261-G[Crossref]
[10] F. Havet, Stable set meeting every longest path, Discrete Math. 289 (2004) 169-173. doi:10.1016/j.disc.2004.07.013[Crossref] | Zbl 1056.05072
[11] J.M. Laborde, C. Payan, N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982) 173-177 (Teubner-Texte Math., 59 1983).
[12] M. Richardson, Solutions of irreflexive relations, Ann. of Math. 58 (1953) 573-590. doi:10.2307/1969755[Crossref] | Zbl 0053.02902