Coloring Some Finite Sets in ℝn
József Balogh ; Alexandr Kostochka ; Andrei Raigorodskii
Discussiones Mathematicae Graph Theory, Tome 33 (2013), p. 25-31 / Harvested from The Polish Digital Mathematics Library

This note relates to bounds on the chromatic number χ(ℝn) of the Euclidean space, which is the minimum number of colors needed to color all the points in ℝn so that any two points at the distance 1 receive different colors. In [6] a sequence of graphs Gn in ℝn was introduced showing that . For many years, this bound has been remaining the best known bound for the chromatic numbers of some lowdimensional spaces. Here we prove that and find an exact formula for the chromatic number in the case of n = 2k and n = 2k − 1.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267832
@article{bwmeta1.element.doi-10_7151_dmgt_1641,
     author = {J\'ozsef Balogh and Alexandr Kostochka and Andrei Raigorodskii},
     title = {Coloring Some Finite Sets in $\mathbb{R}$n},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {33},
     year = {2013},
     pages = {25-31},
     zbl = {1296.05066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_7151_dmgt_1641}
}
József Balogh; Alexandr Kostochka; Andrei Raigorodskii. Coloring Some Finite Sets in ℝn. Discussiones Mathematicae Graph Theory, Tome 33 (2013) pp. 25-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_7151_dmgt_1641/

[1] N.G. de Bruijn and P. Erdős, A colour problem for infinite graphs and a problem in the theory of relations, Proc. Koninkl. Nederl. Acad. Wet. (A) 54 (1951) 371-373. | Zbl 0044.38203

[2] P. Frankl and R. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981) 357-368. doi:10.1007/BF02579457[Crossref] | Zbl 0498.05048

[3] A.B. Kupavskiy, On coloring spheres embedded into Rn, Sb. Math. 202(6) (2011) 83-110.

[4] A.B. Kupavskiy and A.M. Raigorodskii, On the chromatic number of R9, J. Math. Sci. 163(6) (2009) 720-731. doi:10.1007/s10958-009-9708-4[Crossref] | Zbl 1288.05093

[5] D.G. Larman, A note on the realization of distances within sets in Euclidean space, Comment. Math. Helv. 53 (1978) 529-535. doi:10.1007/BF02566096[Crossref]

[6] D.G. Larman and C.A. Rogers, The realization of distances within sets in Euclidean space, Mathematika 19 (1972) 1-24. doi:10.1112/S0025579300004903[Crossref] | Zbl 0246.05020

[7] N. Pippenger and J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs, J. Combin. Theory (A) 51 (1989) 24-42. doi:10.1016/0097-3165(89)90074-5[Crossref] | Zbl 0729.05038

[8] A.M. Raigorodskii, On the chromatic number of a space, Russian Math. Surveys 55 (2000) N2, 351-352. doi:10.1070/RM2000v055n02ABEH000281[Crossref]

[9] A.M. Raigorodskii, The problems of Borsuk and Grünbaum on lattice polytopes, Izv. Math. 69(3) (2005) 81-108. English transl. Izv. Math. 69(3) (2005) 513-537. doi:10.1070/IM2005v069n03ABEH000537[Crossref]