Coefficient bounds for some subclasses of p-valently starlike functions
C. Selvaraj ; O. S. Babu ; G. Murugusundaramoorthy
Annales UMCS, Mathematica, Tome 67 (2013), p. 65-78 / Harvested from The Polish Digital Mathematics Library

For functions of the form f(z) = zp + ∑∞n=1 ap+n zp+n we obtain sharp bounds for some coefficients functionals in certain subclasses of starlike functions. Certain applications of our main results are also given. In particular, Fekete-Szegö-like inequality for classes of functions defined through extended fractional differintegrals are obtained

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267938
@article{bwmeta1.element.doi-10_2478_v10062-012-0032-y,
     author = {C. Selvaraj and O. S. Babu and G. Murugusundaramoorthy},
     title = {Coefficient bounds for some subclasses of p-valently starlike functions},
     journal = {Annales UMCS, Mathematica},
     volume = {67},
     year = {2013},
     pages = {65-78},
     zbl = {1291.30108},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0032-y}
}
C. Selvaraj; O. S. Babu; G. Murugusundaramoorthy. Coefficient bounds for some subclasses of p-valently starlike functions. Annales UMCS, Mathematica, Tome 67 (2013) pp. 65-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0032-y/

[1] Ali, R. M., Ravichandran, V., Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35-46.[Crossref] | Zbl 1113.30024

[2] Janowski, W., Some extremal problems for certain families of analytic functions, Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys. 21 (1973), 17-25. | Zbl 0252.30021

[3] Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analyticfunctions, Proc. Amer. Math. Soc. 20 (1969), 8-12.[Crossref] | Zbl 0165.09102

[4] Ma, W. C., Minda, D., A unified treatment of some special classes of univalentfunctions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Int. Press, Cambridge, MA, 1994, 157-169. | Zbl 0823.30007

[5] Owa, S., On the distortion theorem. I, Kyungpook Math. J. 18 (1) (1978), 53-59. | Zbl 0401.30009

[6] Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (5) (1987), 1057-1077. | Zbl 0611.33007

[7] Patel, J., Mishra, A., On certain subclasses of multivalent functions associated withan extended differintegral operator, J. Math. Anal. Appl. 332 (2007), 109-122.[Crossref] | Zbl 1125.30010

[8] Prokhorov, D. V., Szynal, J., Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125-143.

[9] Selvaraj, C., Selvakumaran, K. A., Fekete-Szeg¨o problem for some subclass of analyticfunctions, Far East J. Math. Sci. (FJMS) 29 (3) (2008), 643-652. | Zbl 1160.30330

[10] Srivastava, H. M., Mishra, A. K., Das, M. K., The Fekete-Szeg¨o problem for a subclassof close-to-convex functions, Complex Variables Theory Appl. 44 (2) (2001), 145-163.

[11] Srivastava, H. M., Owa, S., An application of the fractional derivative, Math. Japon. 29 (3) (1984), 383-389. | Zbl 0522.30011

[12] Srivastava, H. M., Owa, S., Univalent Functions, Fractional Calculus and their Applications, Halsted Press/John Wiley & Sons, Chichester-New York, 1989. | Zbl 0683.00012