Let D¯ denote the unit disk {z : |z| < 1} in the complex plane C. In this paper, we study a family of polynomials P with only one zero lying outside D¯. We establish criteria for P to satisfy implying that each of P and P' has exactly one critical point outside D¯.
@article{bwmeta1.element.doi-10_2478_v10062-012-0025-x, author = {Somjate Chaiya and Aimo Hinkkanen}, title = {Location of the critical points of certain polynomials}, journal = {Annales UMCS, Mathematica}, volume = {67}, year = {2013}, pages = {1-9}, zbl = {1295.30016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0025-x} }
Somjate Chaiya; Aimo Hinkkanen. Location of the critical points of certain polynomials. Annales UMCS, Mathematica, Tome 67 (2013) pp. 1-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0025-x/
[1] Boyd, D. W., Small Salem numbers, Duke Math. J. 44 (1977), 315-328.[Crossref]
[2] Bertin, M. J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J. P., Pisot and Salem Numbers, Birkh¨auser Verlag, Basel, 1992.[WoS]
[3] Chaiya, S., Complex dynamics and Salem numbers, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2008.
[4] Palka, Bruce P., An Introduction to Complex Function Theory, Springer-Verlag, New York, 1991. | Zbl 0726.30001
[5] Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002. | Zbl 1072.30006
[6] Salem, R., Power series with integral coefficients, Duke Math. J. 12 (1945), 153-173.[Crossref]
[7] Salem, R., Algebraic Numbers and Fourier Analysis, D. C. Heath and Co., Boston, Mass., 1963. | Zbl 0126.07802
[8] Sheil-Small, T., Complex Polynomials, Cambridge University Press, Cambridge, 2002. | Zbl 1012.30001
[9] Walsh, J. L., Sur la position des racines des d´eriv´ees d’un polynome, C. R. Acad. Sci. Paris 172 (1921), 662-664. | Zbl 48.0086.01