Elementary examples of Loewner chains generated by densities
Alan Sola
Annales UMCS, Mathematica, Tome 67 (2013), p. 83-101 / Harvested from The Polish Digital Mathematics Library

We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267779
@article{bwmeta1.element.doi-10_2478_v10062-012-0024-y,
     author = {Alan Sola},
     title = {Elementary examples of Loewner chains generated by densities},
     journal = {Annales UMCS, Mathematica},
     volume = {67},
     year = {2013},
     pages = {83-101},
     zbl = {1291.30114},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0024-y}
}
Alan Sola. Elementary examples of Loewner chains generated by densities. Annales UMCS, Mathematica, Tome 67 (2013) pp. 83-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0024-y/

[1] Berkson, E., Porta, H., Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101-115. | Zbl 0382.47017

[2] Bracci, F., Contreras, M. D., D´ıaz-Madrigal, S., Evolution families and the Loewnerequation I: the unit disk, J. Reine Angew. Math., to appear.

[3] Bracci, F., Contreras, M. D., D´ıaz-Madrigal, S., Regular poles and β-numbers in thetheory of holomorphic semigroups, arxiv.org/abs/1201.4705.

[4] Carleson, L., Makarov, N., Aggregation in the plane and Loewner’s equation, Comm. Math. Phys. 216 (2001), 583-607. | Zbl 1042.82039

[5] Carleson, L., Makarov, N., Laplacian path models. Dedicated to the memory ofThomas H. Wolff, J. Anal. Math. 87 (2002), 103-150. | Zbl 1040.30011

[6] Contreras, M. D., D´ıaz-Madrigal, S., Gumenyuk, P., Geometry behind Loewnerchains, Complex Anal. Oper. Theory 4 (2010), 541-587. | Zbl 1209.30010

[7] Contreras, M. D., D´ıaz-Madrigal, S., Gumenyuk, P., Local duality in Loewner equations, arxiv.org/abs/1202.2334. | Zbl 1316.30025

[8] Contreras, M. D., D´ıaz-Madrigal, S., Pommerenke, Ch., On boundary critical pointsfor semigroups of analytic functions, Math. Scand. 98 (2006), 125-142. | Zbl 1143.30013

[9] Dur´an, M. A., Vasconcelos, G. L., Interface growth in two dimensions: A Loewnerequation approach, Phys. Rev. E 82 (2010), 031601.

[10] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems, Birkh¨auser Verlag, Basel, 2010. | Zbl 1198.37001

[11] Gubiec, T., Szymczak, P., Fingered growth in channel geometry: A Loewner equationapproach, Phys. Rev. E 77 (2008), 041602.

[12] Hastings, M., Levitov, L., Laplacian growth as one-dimensional turbulence, Phys. D: Nonlinear Phenomena 116 (1998), 244-252. | Zbl 0962.76542

[13] Ivanov, G., Prokhorov, D., Vasil’ev, A., Singular solutions to the Loewner equation, Bull. Sci. Math. 136 (2012), 328-341.

[14] Johansson Viklund, F., Sola, A., Turner, A., Scaling limits of anisotropic Hastings-Levitov clusters, Ann. Inst. H. Poincar´e Probab. Stat. 48 (2012), 235-257. | Zbl 1251.82025

[15] Kager, W., Nienhuis, B., Kadanoff, L. P., Exact solutions for Loewner evolutions, J. Statist. Phys. 115 (2004), 805-822. | Zbl 1056.30005

[16] Kuznetsov, A., Boundary behaviour of Loewner chains, arxiv.org/abs/0705.4564.

[17] Lawler, G., Conformally Invariant Processes in the Plane, American Mathematical Society, Providence, 2005. | Zbl 1074.60002

[18] Lind, J., A sharp condition for the Loewner equation to generate slits, Ann. Acad. Sci. Fenn. Math. 30 (2005), 143-158. | Zbl 1069.30012

[19] Lind, J., Marshall, D. E., Rohde, S., Collisions and spirals of Loewner traces, Duke Math. J. 154 (2010), 527-573.[WoS] | Zbl 1206.30024

[20] Marshall, D. E., Rohde, S., The Loewner differential equation and slit mappings, J. Amer. Math. Soc. 18 (2005), 763-778. | Zbl 1078.30005

[21] Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, G¨ottingen, 1975.

[22] Pommerenke, Ch., Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin- Heidelberg, 1992. | Zbl 0534.30008

[23] Popescu, M. N., Hentschel, H. G. E., Family, F., Anisotropic diffusion-limited aggregation, Phys. Rev. E 69 (2004), 061403.

[24] Rohde, S., Zinsmeister, M., Some remarks on Laplacian growth, Topology Appl. 152 (2005), 26-43. | Zbl 1077.60040

[25] Selander, G., Two deterministic growth models related to diffusion-limited aggregation. Doctoral dissertation, Thesis (Dr. Tech.), Kungliga Tekniska Hogskolan, 1999, pp. 101.

[26] Siskakis, A. G., Semi-groups of composition operators on spaces of analytic functions,a review, Studies on composition operators (Laramie, WY, 1996), 229-252, Contemp. Math., 213, Amer. Math. Soc., Providence, R.I., 1998. | Zbl 0904.47030

[27] Vasil’ev, A., Evolution of conformal maps with quasiconformal extensions, Bull. Sci. Math. 129 (2005), 831-859.