We describe all F2Mm1,m2,n1,n2-natural operators D: Qτproj-prj ↝QT* transforming projectable-projectable classical torsion-free linear connections ∇ on fibred-fibred manifolds Y into classical linear connections D(∇) on cotangent bundles T*Y of Y . We show that this problem can be reduced to finding F2Mm1,m2,n1,n2-natural operators D: Qτproj-proj ↝ (T*,⊗pT*⊗⊗qT) for p = 2, q = 1 and p = 3, q = 0.
@article{bwmeta1.element.doi-10_2478_v10062-012-0017-x, author = {Anna Bednarska}, title = {On lifts of projectable-projectable classical linear connections to the cotangent bundle}, journal = {Annales UMCS, Mathematica}, volume = {67}, year = {2013}, pages = {1-10}, zbl = {1287.58002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0017-x} }
Anna Bednarska. On lifts of projectable-projectable classical linear connections to the cotangent bundle. Annales UMCS, Mathematica, Tome 67 (2013) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0017-x/
[1] Doupovec, M., Mikulski, W. M., On prolongation of higher order connections, Ann. Polon. Math. 102, no. 3 (2011), 279-292. | Zbl 1230.58004
[2] Kol´aˇr, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 67-76.
[3] Kol´aˇr, I., Michor, P. W., Slov´ak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin-Heidelberg, 1993.
[4] Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math. 101, no. 3 (2011), 237-250. | Zbl 1230.58007
[5] Kurek, J., Mikulski, W. M., The natural liftings of connections to tensor powers of thecotangent bundle, AGMP-8 Proceedings (Brno 2012), Miskolc Mathematical Notes, to appear.
[6] Kur´eˇs, M., Natural lifts of classical linear connections to the cotangent bundle, Suppl. Rend. Mat. Palermo II 43 (1996), 181-187. | Zbl 0905.53018
[7] Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (3-4) (2001), 441-458. | Zbl 0996.58002
[8] Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973. | Zbl 0262.53024