In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping F in the unit disk D, if F(D) is a convex domain, then the inequality |G(z2)− G(z1)| < |H(z2) − H(z1)| holds for all distinct points z1, z2∈ D. Here H and G are holomorphic mappings in D determined by F = H + Ḡ, up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain Ω in ℂ and improve it provided F is additionally a quasiconformal mapping in Ω.
@article{bwmeta1.element.doi-10_2478_v10062-012-0015-z, author = {Dariusz Partyka and Ken-ichi Sakan}, title = {On a result by Clunie and Sheil-Small}, journal = {Annales UMCS, Mathematica}, volume = {66}, year = {2012}, pages = {81-92}, zbl = {1307.31003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0015-z} }
Dariusz Partyka; Ken-ichi Sakan. On a result by Clunie and Sheil-Small. Annales UMCS, Mathematica, Tome 66 (2012) pp. 81-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0015-z/
[1] Bshouty, D., Hengartner, W., Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48 (1994), 12-42. | Zbl 0894.30014
[2] Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 3-25. | Zbl 0506.30007
[3] Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692. | Zbl 0015.15903
[4] Partyka, D., The generalized Neumann-Poincaré operator and its spectrum, Dissertationes Math., vol. 366, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997. | Zbl 0885.30014
[5] Partyka, D., Sakan, K., A simple deformation of quasiconformal harmonic mappingsin the unit disk, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 37 (2012), 539-556. | Zbl 1272.30035