Classes of meromorphic multivalent functions with Montel’s normalization
Jacek Dziok
Annales UMCS, Mathematica, Tome 66 (2012), p. 31-46 / Harvested from The Polish Digital Mathematics Library

In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:268152
@article{bwmeta1.element.doi-10_2478_v10062-012-0011-3,
     author = {Jacek Dziok},
     title = {Classes of meromorphic multivalent functions with Montel's normalization},
     journal = {Annales UMCS, Mathematica},
     volume = {66},
     year = {2012},
     pages = {31-46},
     zbl = {1295.30031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0011-3}
}
Jacek Dziok. Classes of meromorphic multivalent functions with Montel’s normalization. Annales UMCS, Mathematica, Tome 66 (2012) pp. 31-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0011-3/

[1] Aouf, M. K., Certain classes of meromorphic multivalent functions with positive coefficients, Math. Comput. Modelling 47 (2008), 328-340. | Zbl 1140.30004

[2] Aouf, M. K., Certain subclasses of meromorphically p-valent functions with positive or negative coefficients, Math. Comput. Modelling 47 (2008), 997-1008.[WoS] | Zbl 1144.30302

[3] Aouf, M. K., Silverman, H., Partial sums of certain meromorphic p-valent functions, J. Ineq. Pure and Appl. Math. 7(4) (2006), art. no. 119. | Zbl 1131.30307

[4] Darwish, H. E., Meromorphic p-valent starlike functions with negative coefficients, J. Ineq. Pure and Appl. Math. 33 (2002), 967-76. | Zbl 1076.30505

[5] Dziok, J., Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), 765-774.[WoS] | Zbl 1265.30046

[6] Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7-18.[Crossref] | Zbl 1040.30003

[7] Montel, P., Leçons sur les Fonctions Univalentes ou Multivalentes, Gauthier-Villars, Paris, 1933. | Zbl 59.0346.14

[8] Mogra, M. L., Meromorphic multivalent functions with positive coefficients I and II, Math. Japon. 35 (1990), 1-11 and 1089-1098. | Zbl 0705.30019

[9] Silverman, H., Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221-227. | Zbl 0894.30010

[10] Silverman, H., Univalent functions with varying arguments, Houston J. Math. 7 (1981), 283-287. | Zbl 0472.30018

[11] Silvia, E. M., Partial sums of convex functions of order α, Houston. J. Math. 11 (1985), 397-404. | Zbl 0596.30025

[12] Srivastava, H. M., Owa, S., Certain classes of analytic functions with varying arguments, J. Math. Anal. Appl. 136 (1988), 217-228. | Zbl 0643.30008

[13] Raina, R. K., Srivastava, H. M., A new class of meromorphically multivalent functions with applications to generalized hypergeometric functions, Math. Comput. Modelling 43 (2006), 350-356. | Zbl 1140.30007

[14] Wilf, H. S., Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693.[Crossref] | Zbl 0100.07201