In this paper, we introduce some subclasses of meromorphic functions in the punctured unit disc. Several inclusion relationships and some other interesting properties of these classes are discussed.
@article{bwmeta1.element.doi-10_2478_v10062-012-0007-z, author = {Ali Muhammad}, title = {On inclusion relationships of certain subclasses of meromorphic functions involving integral operator}, journal = {Annales UMCS, Mathematica}, volume = {66}, year = {2012}, pages = {63-72}, zbl = {1272.30026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0007-z} }
Ali Muhammad. On inclusion relationships of certain subclasses of meromorphic functions involving integral operator. Annales UMCS, Mathematica, Tome 66 (2012) pp. 63-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0007-z/
Carlson, B. C., Shaeffer, B. D., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745.[Crossref] | Zbl 0567.30009
Cho, N. E., Noor, K. I., Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo-Srivastava operator, J. Math. Anal. Appl. 320 (2006), no. 2, 779-786. | Zbl 1102.30013
Cho, N. E., Kwon, O. S. and Srivastava, H. M., Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiflier transformations, Integral Transforms Spec. Funct. 16 (2005), no. 8, 647-659. | Zbl 1096.30008
Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1-13.[WoS] | Zbl 0937.30010
Hohlov, E. Y., Operators and operations in the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat., (1978), no. 10 (197), 83-89 (in Russian).
Jung, I. B., Kim, Y. C. and Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), no. 1, 138-147. | Zbl 0774.30008
Kumar, V., Shukla, S. L., Certain integrals for classes of p-valent meromorphic functions, Bull. Austral. Math. Soc. 25 (1982), no. 1, 85-97.[Crossref] | Zbl 0466.30015
Miller, S. S., Differential inequalities and Carathéodory functions, Bull. Amer. Math. Soc. 81 (1975), 79-81. | Zbl 0302.30003
Noor, K. I., On certain classes of meromorphic functions involving integral operators, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 4, Article 138, 8 pp. (electronic). | Zbl 1131.30316
Noor, K. I., On subclasses of close-to-convex functions of higher order, Internat. J. Math. Math. Sci. 15 (1992), no. 2, 279-290.[Crossref] | Zbl 0758.30010
Noor, K. I., On new classes of integral operators, J. Nat. Geom. 16 (1999), no. 1-2, 71-80. | Zbl 0942.30007
Noor, K. I., On close-to-convex and related functions, Ph. D. Thesis, University of Wales, Swansea, U. K., 1972.
Noor, K. I., On quasiconvex functions and related topics, Internat. J. Math. Math. Sci. 10 (1987), no. 2, 241-258.[Crossref] | Zbl 0637.30012
Noor, K. I., Noor, M. A., On integral operators, J. Math. Anal. Appl. 238 (1999), no. 2, 341-352. | Zbl 0934.30007
Noor, K. I., Thomas, D. K., Quasiconvex univalent functions, Internat. J. Math. Math. Sci. 3 (1980), no. 2, 255-266.[Crossref] | Zbl 0498.30017
Padmanabhan, K., Parvatham, R., Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math. 31 (1975/76), no. 3, 311-323. | Zbl 0337.30009
Pinchuk, B., Functions of bounded boundary rotation, Israel J. Math. 10 (1971), 6-16.[Crossref] | Zbl 0224.30024
Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.[Crossref] | Zbl 0303.30006
Selvaraj, C., Karthikeyan, K. R., Some inclusion relationships for certain subclasses of meromorphic functions associated with a family of integral operators, Acta Math. Univ. Comenian. (N. S.) 78 (2009), no. 2, 245-254. | Zbl 1199.30097
Yuan, S.-M., Liu, Z.-M. and Srivastava, H. M., Some inclusion relationships and integral-preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl. 337 (2008), no.1, 505-515.[WoS] | Zbl 1129.30020