Some properties of secantoptics of ovals defined by Skrzypiec in 2008 were proved by Mozgawa and Skrzypiec in 2009. In this paper we generalize to this case results obtained by Cieślak, Miernowski and Mozgawa in 1996 and derive an integral formula for an annulus bounded by a given oval and its secantoptic. We describe the change of the area bounded by a secantoptic and find the differential equation for this function. We finish with some examples illustrating the above results.
@article{bwmeta1.element.doi-10_2478_v10062-012-0006-0, author = {Witold Mozgawa and Magdalena Skrzypiec}, title = {Integral formula for secantoptics and its application}, journal = {Annales UMCS, Mathematica}, volume = {66}, year = {2012}, pages = {49-62}, zbl = {1276.53004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0006-0} }
Witold Mozgawa; Magdalena Skrzypiec. Integral formula for secantoptics and its application. Annales UMCS, Mathematica, Tome 66 (2012) pp. 49-62. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0006-0/
Benko, K., Cieślak, W., Góźdź, S. and Mozgawa, W., On isoptic curves, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 36 (1990), no. 1, 47-54.
Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35. | Zbl 0739.53001
Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova 96 (1996), 37-49. | Zbl 0881.53003
Gage, M., On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry (Mobile, Ala., 1985), Contemp. Math., 51, Amer. Math. Soc., Providence, RI, 1986, 51-62.
Green, J. W., Sets subtending a constant angle on a circle, Duke Math. J. 17 (1950), 263-267. | Zbl 0039.18201
Góźdź, S., On Jordan plane curves which are isoptics of an oval, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 42 (1996), no. 1, 127-130. | Zbl 0912.53003
Hilton, H., Colomb, R. E., On orthoptic and isoptic loci, Amer. J. Math. 39 (1917), no. 1, 86-94. | Zbl 46.0954.02
Langevin, R., Levitt, G. and Rosenberg, H., Hérissons et multihérissons (envellopes paramétrées par leur application de Gauss), Singularities (Warsaw, 1985), Banach Center Publ. 20, PWN, Warsaw, 1988, 245-253. | Zbl 0658.53004
Martinez-Maure, Y., Geometric inequalities for plane hedgehogs, Demonstratio Math. 32 (1999), no. 1, 177-183. | Zbl 0931.53008
Michalska, M., A sufficient condition for the convexity of the area of an isoptic curve of an oval, Rend. Sem. Mat. Univ. Padova 110 (2003), 161-169. | Zbl 1121.52011
Miernowski, A., Mozgawa, W., Isoptics of pairs of nested closed strictly convex curves and Crofton-type formulas, Beiträge Algebra Geom. 42 (2001), no. 1, 281-288. | Zbl 1021.53050
Mozgawa, W., Skrzypiec, M., Crofton formulas and convexity condition for secantoptics, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 3, 435-445. | Zbl 1178.53001
Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, vol. 1. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
Skrzypiec, M., A note on secantoptics, Beiträge Algebra Geom. 49, (2008), no. 1, 205-215. | Zbl 1155.53003
Szałkowski, D., Isoptics of open rosettes, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 119-128. | Zbl 1135.53004
Szałkowski, D., Isoptics of open rosettes. II, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53 (2007), no. 1, 167-176. | Zbl 1150.53002