On certain general integral operators of analytic functions
B. Frasin
Annales UMCS, Mathematica, Tome 66 (2012), p. 13-23 / Harvested from The Polish Digital Mathematics Library

In this paper, we obtain new sufficient conditions for the operators Fα1,α2,…,αn,β(z) and Gα1,α2,…,αn,β(z) to be univalent in the open unit disc U, where the functions f1, f2, …, fn belong to the classes S*(a, b) and K(a, b). The order of convexity for the operators Fα1,α2,…,αn,β(z) and Gα1,α2,…,αn,β(z) is also determined. Furthermore, and for β = 1, we obtain sufficient conditions for the operators Fn(z) and Gn(z) to be in the class K(a, b). Several corollaries and consequences of the main results are also considered.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:268168
@article{bwmeta1.element.doi-10_2478_v10062-012-0003-3,
     author = {B. Frasin},
     title = {On certain general integral operators of analytic functions},
     journal = {Annales UMCS, Mathematica},
     volume = {66},
     year = {2012},
     pages = {13-23},
     zbl = {1267.30038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0003-3}
}
B. Frasin. On certain general integral operators of analytic functions. Annales UMCS, Mathematica, Tome 66 (2012) pp. 13-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0003-3/

Ahlfors, L. V., Sufficient conditions for quasiconformal extension, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 23-29. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974.

Becker, J., Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43. | Zbl 0239.30015

Becker, J., Löwnersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321-335. | Zbl 0236.30024

Breaz, D., Univalence properties for a general integral operator, Bull. Korean Math. Soc. 46 (2009), no. 3, 439-446.[Crossref][WoS] | Zbl 1163.30015

Breaz, D., Breaz, N., Two integral operators, Studia Universitatis Babeş-Bolyai Math., 47 (2002), no. 3, 13-19. | Zbl 1027.30018

Breaz, D., Breaz, N., Univalence conditions for certain integral operators, Studia Universitatis Babeş-Bolyai, Mathematica, 47 (2002), no. 2, 9-15. | Zbl 1027.30046

Breaz, D., Owa, S., Some extensions of univalent conditions for certain integral operators, Math. Inequal. Appl., 10 (2007), no. 2, 321-325. | Zbl 1198.30011

Bulut, S., Univalence preserving integral operators defined by generalized Al- Oboudi differential operators, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 17 (2009), no. 1, 37-50. | Zbl 1249.30023

Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot-Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel, 1983.

Frasin, B. A., General integral operator defined by Hadamard product, Mat. Vesnik, 62 (2010), no. 2, 127-136. | Zbl 1265.30053

Frasin. B. A., Aouf, M. K., Univalence conditions for a new general integral operator, Hacet. J. Math. Stat., 39 (2010), no. 4, 567-575. | Zbl 1237.47050

Jabkubowski, Z. J., On the coefficients of starlike functions of some classes, Ann. Polon. Math. 26 (1972), 305-313.

Pascu, N., An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session: Simion Stoïlow (Braşov, 1987), 43-48, Univ. Braşov, Braşov, 1987.

Pescar, V., A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (2) 19 (1996), no. 2, 53-54. | Zbl 0880.30020

Seenivasagan, N., Sufficient conditions for univalence, Applied Math. E-Notes, 8 (2008), 30-35. | Zbl 1161.30316

Seenivasagan, N., Breaz, D., Certain sufficient conditions for univalence, Gen. Math. 15 (2007), no. 4, 7-15. | Zbl 1199.30161