A family of regular annuli is considered. Affine invariants of annuli are introduced.
@article{bwmeta1.element.doi-10_2478_v10062-012-0002-4, author = {Waldemar Cie\'slak and El\.zbieta Szczygielska}, title = {Affine invariants of annuli}, journal = {Annales UMCS, Mathematica}, volume = {66}, year = {2012}, pages = {7-12}, zbl = {1263.53003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0002-4} }
Waldemar Cieślak; Elżbieta Szczygielska. Affine invariants of annuli. Annales UMCS, Mathematica, Tome 66 (2012) pp. 7-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-012-0002-4/
Bonnesen, T., Fenchel, W., Theorie der konvexen Körper, Chelsea Publishing Co., New York, 1948. | Zbl 0008.07708
Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35. | Zbl 0739.53001
Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37-49. | Zbl 0881.53003
Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.