The relation between the Jacobian and the orders of a linear invariant family of locally univalent harmonic mapping in the plane is studied. The new order (called the strong order) of a linear invariant family is defined and the relations between order and strong order are established.
@article{bwmeta1.element.doi-10_2478_v10062-011-0024-3, author = {Magdalena Sobczak-Kne\'c and Viktor Starkov and Jan Szynal}, title = {Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian}, journal = {Annales UMCS, Mathematica}, volume = {65}, year = {2011}, pages = {191-202}, zbl = {1250.30020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0024-3} }
Magdalena Sobczak-Kneć; Viktor Starkov; Jan Szynal. Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian. Annales UMCS, Mathematica, Tome 65 (2011) pp. 191-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0024-3/
Bshouty, D., Hengartner, W., Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 13-42.
Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004. | Zbl 1055.31001
Godula, J., Liczberski, P. and Starkov, V. V., Order of linearly invariant mappings in Cn, Complex Variables Theory Appl. 42 (2000), 89-96. | Zbl 1026.32032
Pommerenke, Ch., Linear-invariante Familien analytischer Funktionen I, Math. Annalen 155 (1964), 108-154. | Zbl 0128.30105
Schaubroeck, L. E., Subordination of planar harmonic functions, Complex Variables Theory Appl. 41, (2000), 163-178. | Zbl 1020.30021
Sheil-Small, T., Constants for planar harmonic mappings, J. London Math. Soc. 42 (1990), 237-248. | Zbl 0731.30012