Let || · || be the uniform norm in the unit disk. We study the quantities Mn (α) := inf (||zP(z) + α|| - α) where the infimum is taken over all polynomials P of degree n - 1 with ||P(z)|| = 1 and α > 0. In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that infα>0Mn (α) = 1/n. We find the exact values of Mn (α) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.
@article{bwmeta1.element.doi-10_2478_v10062-011-0022-5, author = {Stephan Ruscheweyh and Magdalena Wo\l oszkiewicz}, title = {Estimates for polynomials in the unit disk with varying constant terms}, journal = {Annales UMCS, Mathematica}, volume = {65}, year = {2011}, pages = {169-178}, zbl = {1253.30015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0022-5} }
Stephan Ruscheweyh; Magdalena Wołoszkiewicz. Estimates for polynomials in the unit disk with varying constant terms. Annales UMCS, Mathematica, Tome 65 (2011) pp. 169-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0022-5/
Andrievskii, V., Ruscheweyh, S., Complex polynomials and maximal ranges: back-ground and applications, Recent progress in inequalities (Niš, 1996), Math. Appl., 430, Kluwer Acad. Publ., Dordrecht, 1998, 31-54. | Zbl 0898.30002
Córdova, A., Ruscheweyh, S., On maximal polynomial ranges in circular domains, Complex Variables Theory Appl. 10 (1988), 295-309. | Zbl 0658.30003
Córdova, A., Ruscheweyh, S., On maximal ranges of polynomial spaces in the unit disk, Constr. Approx. 5 (1989), 309-327. | Zbl 0675.30004
Fournier, R., Letac, G. and Ruscheweyh, S., Estimates for the uniform norm of complex polynomials in the unit disk, Math. Nachr. 283 (2010), 193-199.[WoS] | Zbl 1184.30034
Ruscheweyh, S., Varga, R., On the minimum moduli of normalized polynomials with two prescribed values, Constr. Approx. 2 (1986), 349-368. | Zbl 0602.30008