On a modification of the Poisson integral operator
Dariusz Partyka
Annales UMCS, Mathematica, Tome 65 (2011), p. 121-137 / Harvested from The Polish Digital Mathematics Library

Given a quasisymmetric automorphism γ of the unit circle T we define and study a modification Pγ of the classical Poisson integral operator in the case of the unit disk D. The modification is done by means of the generalized Fourier coefficients of γ. For a Lebesgue's integrable complex-valued function f on T, Pγ[f] is a complex-valued harmonic function in D and it coincides with the classical Poisson integral of f provided γ is the identity mapping on T. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator Pγ, the maximal dilatation of a regular quasiconformal Teichmüller extension of γ to D and the smallest positive eigenvalue of γ.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:267964
@article{bwmeta1.element.doi-10_2478_v10062-011-0019-0,
     author = {Dariusz Partyka},
     title = {On a modification of the Poisson integral operator},
     journal = {Annales UMCS, Mathematica},
     volume = {65},
     year = {2011},
     pages = {121-137},
     zbl = {1269.30029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0019-0}
}
Dariusz Partyka. On a modification of the Poisson integral operator. Annales UMCS, Mathematica, Tome 65 (2011) pp. 121-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0019-0/

Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. | Zbl 0072.29602

Duren, P., Theory of Hp-Spaces, Dover Publications, Inc., Mineola, New York, 2000.

Gaier, D., Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin, 1964. | Zbl 0132.36702

Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981. | Zbl 0469.30024

Kellogg, O. D., Foundations of Potential Theory, Dover Publications, Inc., New York, 1953. | Zbl 0053.07301

Krushkal, S. L., On the Grunsky coefficient conditions, Siberian Math. J. 28 (1987), 104-110. | Zbl 0624.30020

Krushkal, S. L., Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings, Comment. Math. Helv. 64 (1989), 650-660. | Zbl 0697.30016

Krushkal, S. L., Univalent holomorphic functions with quasiconformal extensions (variational approach), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. Kühnau), Elsevier B.V., 2005, pp. 165-241. | Zbl 1075.30015

Krushkal, S. L., Quasiconformal Extensions and Reflections, Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. Kühnau), Elsevier B.V., 2005, pp. 507-553. | Zbl 1075.30010

Krzyż, J. G., Conjugate holomorphic eigenfunctions and extremal quasiconformal reflection, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 305-311. | Zbl 0596.30030

Krzyż, J. G., Generalized Fredholm eigenvalues of a Jordan curve, Ann. Polon. Math. 46 (1985), 157-163. | Zbl 0593.30013

Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24. | Zbl 0563.30016

Krzyż, J. G., Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 90-95.

Krzyż, J. G., Partyka, D., Generalized Neumann-Poincaré operator, chord-arc curves and Fredholm eigenvalues, Complex Variables Theory Appl. 21 (1993), 253-263. | Zbl 0793.30031

Kühnau, R., Zu den Grunskyschen Coeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 125-130. | Zbl 0454.30016

Kühnau, R., Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerten und Grunskysche Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 383-391.

Kühnau, R., Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv. 61 (1986), 290-307. | Zbl 0605.30023

Kühnau, R., Koeffizientenbedingungen vom Grunskyschen Typ und Fredholmsche Eigenwerte, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 79-87.

Kühnau, R., A new matrix characterization of Fredholm eigenvalues of quasicircles, J. Anal. Math. 99 (2006), 295-307. | Zbl 1134.30011

Kühnau, R., New characterizations of Fredholm eigenvalues of quasicircles, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5-6, 683-688. | Zbl 1199.30124

Partyka, D., Spectral values and eigenvalues of a quasicircle, Ann. Univ. Mariae Curie-Skłodowska Sec. A 46 (1993), 81-98.

Partyka, D., The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle, Topics in Complex Analysis (Warsaw, 1992), Banach Center Publ., 31, Polish Acad. Sci., Warsaw, 1995, pp. 303-310. | Zbl 0833.30012

Partyka, D., Some extremal problems concerning the operator Bγ, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 163-184.

Partyka, D., The generalized Neumann-Poincaré operator and its spectrum, Dissertationes Math. (Rozprawy Mat.) 366 (1997), 125 pp. | Zbl 0885.30014

Partyka, D., Eigenvalues of quasisymmetric automorphisms determined by VMO functions, Ann. Univ. Mariae Curie-Skłodowska Sec. A 52 (1998), 121-135. | Zbl 1009.30014

Partyka, D., The Grunsky type inequalities for quasisymmetric automorphisms of the unit circle, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 31 (2000), 135-142. | Zbl 1088.30507

Partyka, D., Sakan, K., A conformally invariant dilatation of quasisymmetry, Ann. Univ. Mariae Curie-Skłodowska Sec. A 53 (1999), 167-181. | Zbl 0993.30013

Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

Schiffer, M., Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981), 149-164.

Schober, G., Numerische, insbesondere approximationstheoretische behandlung von funktionalgleichungen, Estimates for Fredholm Eigenvalues Based on Quasiconformal Mapping, Lecture Notes in Math. 333, Springer-Verlag, Berlin, 1973, pp. 211-217.

Shen, Y., Generalized Fourier coefficients of a quasi-symmetric homeomorphism and Fredholm eigenvalue, J. Anal. Math. 112 (2010), no. 1, 33-48. | Zbl 1215.30004

Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.[Crossref] | Zbl 0100.28803

Zając, J., Quasihomographies in the theory of Teichmüller spaces, Dissertationes Math. (Rozprawy Mat.) 357 (1996), 102 pp. | Zbl 0877.30021