We give new characterizations of the analytic Besov spaces Bp on the unit ball B of Cn in terms of oscillations and integral means over some Euclidian balls contained in B.
@article{bwmeta1.element.doi-10_2478_v10062-011-0016-3, author = {Ma\l gorzata Michalska and Maria Nowak and Pawe\l\ Sobolewski}, title = { M\"obius invariant Besov spaces on the unit ball of C n }, journal = {Annales UMCS, Mathematica}, volume = {65}, year = {2011}, pages = {87-97}, zbl = {1253.30084}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0016-3} }
Małgorzata Michalska; Maria Nowak; Paweł Sobolewski. Möbius invariant Besov spaces on the unit ball of C n . Annales UMCS, Mathematica, Tome 65 (2011) pp. 87-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0016-3/
Alfors, L., Möbius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981.
Duren, P., Weir, R., The pseudohyperbolic metric and Bergman spaces in the ball, Trans. Amer. Math. Soc. 359 (2007), 63-76. | Zbl 1109.32003
Hahn, K. T., Youssfi, E. H., Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball of Cn, Complex Variables Theory Appl. 17 (1991), 89-104. | Zbl 0706.47017
Li, S., Wulan, H., Besov space on the unit ball of Cn, Indian J. Math. 48 (2006), no. 2, 177-186. | Zbl 1102.32002
Li, S., Wulan, H., Zhao, R. and Zhu, K., A characterization of Bergman spaces on the unit ball of Cn, Glasgow Math. J. 51 (2009), 315-330. | Zbl 1168.32005
Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), no. 2, 317-335. | Zbl 0561.30025
Li, S., Wulan, H. and Zhu, K., A characterization of Bergman spaces on the unit ball of Cn, II, Canadian Math. Bull., to appear. | Zbl 1239.32005
Nowak, M., Bloch space and Möbius invariant Besov spaces on the unit ball of Cn, Complex Variables Theory Appl. 44 (2001), 1-12. | Zbl 1026.32011
Ouyang, C., Yang, W. and Zhao, R., Möbius invariant Qp spaces associated with the Green's function on the unit ball of Cn, Pacific J. Math. 182 (1998), no. 1, 69-99.
Pavlović, M., A formula for the Bloch norm of a C1-function on the unit ball of Cn, Czechoslovak Math. J. 58(133) (2008), no. 4, 1039-1043. | Zbl 1174.32003
Pavlović, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb. Math. Soc. 51 (2008), 439-441.[WoS] | Zbl 1165.30016
Ren, G., Tu, C., Bloch space in the unit ball of Cn, Proc. Amer. Math. Soc. 133 (2004), no. 3, 719-726. | Zbl 1056.32005
Rudin, W., Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980. | Zbl 0495.32001
Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211-219. | Zbl 0865.30051
Ullrich, D., Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501-518. | Zbl 0609.31003
Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005. | Zbl 1067.32005