We give a quasiconformal version of the proof for the classical Lindelöf theorem: Let f map the unit disk D conformally onto the inner domain of a Jordan curve C. Then C is smooth if and only if arh f'(z) has a continuous extension to D. Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.
@article{bwmeta1.element.doi-10_2478_v10062-011-0012-7, author = {Vladimir Gutlyanskii and Olli Martio and Vladimir Ryazanov}, title = {On a theorem of Lindel\"of}, journal = {Annales UMCS, Mathematica}, volume = {65}, year = {2011}, pages = {45-51}, zbl = {1252.30017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0012-7} }
Vladimir Gutlyanskii; Olli Martio; Vladimir Ryazanov. On a theorem of Lindelöf. Annales UMCS, Mathematica, Tome 65 (2011) pp. 45-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0012-7/
Ahlfors, L. V., Quasiconformal reflections, Acta Math. 109 (1963), 291-301.[Crossref] | Zbl 0121.06403
Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand Co., Inc., Toronto, Ont., 1966; Reprinted by Wadsworth & Brooks, Monterey, CA, 1987.
Gutlyanskii, V. Ya., Ryazanov, V. I., On asymptotically conformal curves, Complex Variables Theory Appl. 25 (1994), 357-366.
Gutlyanskii, V. Ya., Ryazanov, V. I., On the theory of the local behavior of quasiconformal mappings, Izv. Math. 59 (1995), no. 3, 471-498.
Gutlyanskii, V. Ya., Martio, O., Ryazanov, V. I. and Vuorinen, M., Infinitesimal geometry of quasiregular mappings, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 1, 101-130. | Zbl 0938.30014
Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973. | Zbl 0267.30016
Lindelöf, E., Sur la représentation conforme d'une aire simplement connexe sur l'aire d'un cercle, Quatriéme Congrés des Mathématiciens Scandinaves, Stockholm, 1916, pp. 59-90. | Zbl 47.0322.04
Pommerenke, Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg-New York, 1992. | Zbl 0762.30001
Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620. | Zbl 0100.28803