A relatively simple proof is given for Haimo's theorem that a meromorphic function with suitably controlled Schwarzian derivative is a concave mapping. More easily verified conditions are found to imply Haimo's criterion, which is now shown to be sharp. It is proved that Haimo's functions map the unit disk onto the outside of an asymptotically conformal Jordan curve, thus ruling out the presence of corners.
@article{bwmeta1.element.doi-10_2478_v10062-011-0010-9, author = {Martin Chuaqui and Peter Duren and Brad Osgood}, title = {On a theorem of Haimo regarding concave mappings}, journal = {Annales UMCS, Mathematica}, volume = {65}, year = {2011}, pages = {17-28}, zbl = {1243.30014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0010-9} }
Martin Chuaqui; Peter Duren; Brad Osgood. On a theorem of Haimo regarding concave mappings. Annales UMCS, Mathematica, Tome 65 (2011) pp. 17-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0010-9/
Ahlfors, L. V., Weill, G., A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975-978. | Zbl 0106.28504
Becker, J., Pommerenke, Ch., Über die quasikonforme Fortsetzung schlichter Funktionen, Math. Z. 161 (1978), 69-80. | Zbl 0393.30018
Chuaqui, M., Duren, P. and Osgood, B., Schwarzian derivatives of convex mappings, Ann. Acad. Sci. Fenn. Math. 36 (2011), 449-460. | Zbl 1239.30003
Chuaqui, M., Duren, P. and Osgood, B., Schwarzian derivative criteria for univalence of analytic and harmonic mappings, Math. Proc. Cambridge Philos. Soc. 143 (2007), 473-486. | Zbl 1134.30315
Chuaqui, M., Duren, P. and Osgood, B., Concave conformal mappings and prevertices of Schwarz-Christoffel mappings, Proc. Amer. Math. Soc., to appear. | Zbl 1283.30048
Chuaqui, M., Osgood, B., Sharp distortion theorems associated with the Schwarzian derivative, J. London Math. Soc. 48 (1993), 289-298. | Zbl 0792.30013
Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
Duren, P., Schuster A., Bergman Spaces, American Mathematical Society, Providence, Rhode Island, 2004.
Gabriel, R. F., The Schwarzian derivative and convex functions, Proc. Amer. Math. Soc. 6 (1955), 58-66.[Crossref] | Zbl 0071.07002
Haimo, D. T., A note on convex mappings, Proc. Amer. Math. Soc. 7 (1956), 423-428.[WoS][Crossref] | Zbl 0071.07003
Nehari, Z., The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. | Zbl 0035.05104
Nehari, Z., Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954), 700-704. | Zbl 0057.31102
Nehari, Z., A property of convex conformal maps, J. Analyse Math. 30 (1976), 390-393. | Zbl 0334.30006
Pommerenke, Ch., On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), 199-208. | Zbl 0385.30013