In this work, we communicate the topic of complex Lie algebroids based on the extended fractional calculus of variations in the complex plane. The complexified Euler-Lagrange geodesics and Wong's fractional equations are derived. Many interesting consequences are explored.
@article{bwmeta1.element.doi-10_2478_v10062-011-0005-6, author = {Ahmad El-Nabulsi}, title = {Extended fractional calculus of variations, complexified geodesics and Wong's fractional equations on complex plane and on Lie algebroids}, journal = {Annales UMCS, Mathematica}, volume = {65}, year = {2011}, pages = {49-67}, zbl = {1241.49029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0005-6} }
Ahmad El-Nabulsi. Extended fractional calculus of variations, complexified geodesics and Wong's fractional equations on complex plane and on Lie algebroids. Annales UMCS, Mathematica, Tome 65 (2011) pp. 49-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0005-6/
Agrawal, O. P., Fractional variational calculus and the transversality conditions, J. Phys. A 39 (2006), 10375-10384. | Zbl 1097.49021
Agrawal, O. P., Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A 40 (2007), 6287-6303. | Zbl 1125.26007
Agrawal, O. P., Tenreiro Machado, J. A. and Sabatier, J. (Editors), Fractional Derivatives and their Applications, Nonlinear Dynamics 38, no. 1-4 (2004).[Crossref]
Almeida, R., Malinowska, A. B. and Torres, D. F. M., A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys. 51, no. 3, 033503 (2010), 12 pp. | Zbl 1309.49003
Atanacković, T. M., Konjik, S. and Pilipović, S., Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A 41, no. 9, 095201 (2008), 12 pp. | Zbl 1175.49020
Baleanu, D., Agrawal, O. P., Fractional Hamilton formalism within Caputo's derivative, Czechoslovak J. Phys. 56, no. 10-11 (2006), 1087-1092. | Zbl 1111.37304
Cannas da Silva, A., Weinstein, A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10. American Mathematical Society, Providence, 1999. | Zbl 1135.58300
Connes, A., A survey of foliations and operator algebras. Operator algebras and applications, Part I, pp. 521-628, Proc. Sympos. Pure Math. 38, Amer. Math. Soc., Providence, R. I., (1982).[Crossref]
El-Nabulsi, R. A., A fractional approach to nonconservative Lagrangian dynamical systems, Fizika A 14, no. 4, (2005) 289-298.
El-Nabulsi, R. A., A fractional action-like variational approach of some classical, quantum and geometrical dynamics, Int. J. Appl. Math. 17 (2005), 299-317. | Zbl 1137.70349
El-Nabulsi, R. A., Fractional field theories from multi-dimensional fractional variational problems, Int. J. Geom. Methods Mod. Phys. 5 (2008), 863-892. | Zbl 1172.26305
El-Nabulsi, R. A., Complexified dynamical systems from real fractional actionlike with time-dependent fractional dimension on multifractal sets, Invited contribution to The 3rd International Conference on Complex Systems and Applications, University of Le Havre, Le Havre, Normandy, France, June 29-July 02, (2009).
El-Nabulsi, R. A., Fractional variational problems from extended exponentially fractional integral, Appl. Math. Comp. 217, no. 22 (2011), 9492-9496. | Zbl 1220.26004
El-Nabulsi, R. A., Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems, Chaos Solitons Fractals 42 (2009), 52-61. | Zbl 1198.70010
El-Nabulsi, R. A., Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems, Chaos Solitons Fractals 42 (2009), 52-61. | Zbl 1198.70010
El-Nabulsi, R. A., The fractional calculus of variations from extended Erdélyi-Kober operator, Int. J. Mod. Phys. B 23 (2009), 3349-3361.
El-Nabulsi, R. A., Fractional quantum Euler-Cauchy equation in the Schrödinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics, Mod. Phys. Lett. B 23 (2009), 3369-3386. | Zbl 1185.81089
El-Nabulsi, R. A., Complexified fractional heat kernel and physics beyond the spectral triplet action in noncommutative geometry, Int. J. Geom. Methods Mod. Phys. 6 (2009), 941-963. | Zbl 1179.58002
El-Nabulsi, R. A., Fractional Dirac operators and left-right fractional Chamseddine-Connes spectral bosonic action principle in noncommutative geometry, Int. J. Geom. Methods Mod. Phys. 7 (2010), 95-134. | Zbl 1195.35296
El-Nabulsi, R. A., Modifications at large distances from fractional and fractal arguments, Fractals 18 (2010), 185-190. | Zbl 1196.28014
El-Nabulsi, R. A., Oscillating flat FRW dark energy dominated cosmology from periodic functional approach, Comm. Theor. Phys. 54, no. 01 (2010), 16-20. | Zbl 1213.83147
El-Nabulsi, R. A., A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators, Appl. Math. Lett. 24, no. 10 (2011), 1647-1653. | Zbl 1325.37036
El-Nabulsi, R. A., Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator, Central Europan J. Phys. 9, no. 1 (2011), 260-256.
El-Nabulsi, R. A., Torres, D. F. M., Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β), Math. Methods Appl. Sci. 30 (2007), 1931-1939. | Zbl 1177.49036
El-Nabulsi, R. A, Torres, D. F. M., Fractional actionlike variational problems, J. Math. Phys. 49, no. 5, 053521 (2008), 7 pp. | Zbl 1152.81422
Frasin, B. A., Some applications of fractional calculus operators to the analytic part of harmonic univalent functions, Hacet. J. Math. Stat. 34 (2005), 1-7. | Zbl 1145.30303
Frederico, G. S. F., Torres, D. F. M., Constants of motion for fractional action-like variational problems, Int. J. Appl. Math. 19 (2006), 97-104. | Zbl 1103.49012
Frederico, G. S. F., Torres, D. F. M., Non-conservative Noether's theorem for fractional action-like variational problems with intrinsic and observer times, Int. J. Ecol. Econ. Stat. 9, no. F07 (2007), 74-82.
Frederico, G. S. F., Torres, D. F. M., Conservation laws for invariant functionals containing compositions, Appl. Anal. 86 (2007), 1117-1126.[Crossref] | Zbl 1190.49027
Frederico, G. S. F., Torres, D. F. M., A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334 (2007), 834-846. | Zbl 1119.49035
Frederico, G. S. F., Torres, D. F. M., Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, Int. Math. Forum 3, no. 9-12 (2008), 479-493. | Zbl 1154.49016
Frederico, G. S. F., Torres, D. F. M., Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, Int. Math. Forum 3, no. 9-12 (2008), 479-493. | Zbl 1154.49016
Glöckner, H., Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347-409. | Zbl 1022.22021
Glöckner, H., Neeb, K. H., Banach-Lie quotients, enlargibility, and universal complexifications, J. Reine Angew. Math. 560 (2003), 1-28. | Zbl 1029.22029
Goldfain, E., Fractional dynamics, Cantorian space-time and the gauge hierarchy problem, Chaos Solitons Fractals 22 (2004), 513-520.[Crossref] | Zbl 1068.81633
Goldfain, E., Complexity in quantum field theory and physics beyond the standard model, Chaos Solitons Fractals 28 (2006), 913-922.[Crossref] | Zbl 1097.81928
Goldfain, E., Fractional dynamics and the standard model for particle physics, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), 1397-1404.[Crossref] | Zbl 1221.81175
Gualtieri, M., Generalized complex geometry, arXiv:math/0703298v2. | Zbl 1235.32020
Gukov, S., Witten, E., Gauge theory, ramification, and the geometric Langlands program, Current developments in mathematics, 2006, 35-180, Int. Press, Somerville, MA, 2008. | Zbl 1237.14024
Herrmann, R., Fractional dynamic symmetries and the ground state properties of nuclei, arXiv:0806.2300v2.
Herrmann, R., Fractional spin - a property of particles described with a fractional Schrödinger equation, arXiv:0805.3434v1.
Hilfer, R. (Editor), Applications of Fractional Calculus in Physics, Word Scientific Publishing Co., River Edge, NJ, 2000. | Zbl 0998.26002
Ivan, G., Ivan, M. and Opris, D., Fractional Euler-Lagrange and fractional Wong equations for Lie algebroids, Proceedings of the 4th International Colloquium Mathematics and Numerical Physics, October 6-8, 2006, Bucharest, Romania, 73-80. | Zbl 1221.70022
Kapustin, A., Witten, E., Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007), 1-236.[Crossref] | Zbl 1128.22013
Kosyakov, B. P., The field of an arbitrarily moving colored charge, Teoret. Mat. Fiz. 87 (1991), 422-425 (Russian); translation in Theoret. and Math. Phys. 87 (1991), 632-635.
Landsman, L. P., Lie groupoids and Lie algebroids in physics and noncommutative geometry, J. Geom. Phys. 56 (2006), 24-54.[Crossref] | Zbl 1088.58009
Lübke, M., Okonek, C., Moduli spaces of simple bundles and Hermitian-Einstein connections, Math. Ann. 276 (1987), 663-674. | Zbl 0609.53009
Lübke, M., Teleman, A., The Kobayashi-Hitchin Correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. | Zbl 0849.32020
Mackenzie, K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, Vol. 213, Cambridge University Press, Cambridge, 2005. | Zbl 1078.58011
Martinez, E., Lagrangian mechanics on Lie algebroids, Acta Appl. Math. 67 (2001), 295-320.[Crossref] | Zbl 1002.70013
Martinez, E., Geometric formulation of mechanics on Lie algebroids, Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME 2, (2001) 209-222.
Martinez, E., Lie algebroids in classical mechanics and optimal control, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 050, 17 pp.
Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons Inc., New York, 1993. | Zbl 0789.26002
Oldham, K. B., Spanier, J., The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, Acad. Press, New York-London, 1974. | Zbl 0292.26011
Ortigueira, M. D., Tenreiro Machado, J. A. (Editors), Fractional Signal Processing and Applications, Signal Processing 83, no. 11 (2003).
Ortigueira, M. D., Tenreiro Machado, J. A. (Editors), Fractional Calculus Applications in Signals and Systems, Signal Processing 86, no. 10 (2006).[Crossref] | Zbl 1172.94301
Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Academic Press Inc., San Diego, CA, 1999. | Zbl 0924.34008
Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E (3) 53 (1996), 1890-1899.
Samko, S., Kilbas A. and Marichev, O., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. | Zbl 0818.26003
Tenreiro Machado, J. A. (Editor), Fractional Order Calculus and its Applications, Nonlinear Dynamics 29, no. 1-4 (2002).[Crossref]
Tenreiro Machado, J. A., Barbosa, R. S. (Editors), Fractional Differentiation and its Applications, J. Vib. Control 14, no. 9-10 (2008).
Tenreiro Machado, J. A., Luo, A. (Editors), Discontinuous and Fractional Dynamical Systems, ASME Journal of Computational and Nonlinear Dynamics 3, no. 2 (2008).
Weinstein, A., Lagrangian mechanics and groupoids, Mechanics day (Waterloo, ON, 1992), 207-231, Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996. | Zbl 0844.22007
Weinstein, A., Poisson geometry. Symplectic geometry, Differential Geom. Appl. 9, no. 1-2 (1998), 213-238.
Zavada, P., Operator of fractional derivative in the complex plane, Comm. Math. Phys. 192 (1998), 261-285. | Zbl 0981.26007