In this paper we introduce and investigate three new subclasses of p-valent analytic functions by using the linear operator Dmλ,p(f * g)(z). The various results obtained here for each of these function classes include coefficient bounds, distortion inequalities and associated inclusion relations for (n, θ)-neighborhoods of subclasses of analytic and multivalent functions with negative coefficients, which are defined by means of a non-homogenous differential equation.
@article{bwmeta1.element.doi-10_2478_v10062-011-0004-7, author = {Rabha El-Ashwah and Mohamed Aouf and S. El-Deeb}, title = { Inclusion and neighborhood properties of certain subclasses of p -valent functions of complex order defined by convolution }, journal = {Annales UMCS, Mathematica}, volume = {65}, year = {2011}, pages = {33-48}, zbl = {1246.30022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0004-7} }
Rabha El-Ashwah; Mohamed Aouf; S. El-Deeb. Inclusion and neighborhood properties of certain subclasses of p -valent functions of complex order defined by convolution . Annales UMCS, Mathematica, Tome 65 (2011) pp. 33-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0004-7/
Altintaş, O., Neighborhoods of certain p-valently analytic functions with negative coefficients, Appl. Math. Comput. 187 (2007), 47-53.[WoS] | Zbl 1119.30003
Altintaş, O., Irmak, H. and Srivastava, H. M., Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator, Comput. Math. Appl. 55 (2008), 331-338.[WoS] | Zbl 1155.30349
Altintaş, O., Özkan, Ö. and Srivastava, H. M., Neighborhoods of a certain family of multivalent functions with negative coefficient, Comput. Math. Appl. 47 (2004), 1667-1672. | Zbl 1068.30006
Aouf, M. K., Inclusion and neighborhood properties for certain subclasses of analytic functions associated with convolution structure, J. Austral. Math. Anal. Appl. 6, no. 2 (2009), Art. 4, 1-10. | Zbl 1188.30007
Aouf, M. K., Mostafa, A. O., On a subclass of n-p-valent prestarlike functions, Comput. Math. Appl. 55 (2008), 851-861.[WoS] | Zbl 1140.30304
Aouf, M. K., Seoudy, T. M., On differential sandwich theorems of analytic functions defined by certain linear operator, Ann. Univ. Marie Curie-Skłodowska Sect. A, 64 (2) (2010), 1-14. | Zbl 1213.30012
Cătaş, A., On certain classes of p-valent functions defined by multiplier transformations, Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoglu, Editors), pp. 241-250, TC İstanbul Kűltűr University Publications, Vol. 91, TC İstanbul Kűltűr University, İstanbul, Turkey, 2008.
El-Ashwah, R. M., Aouf, M. K., Inclusion and neighborhood properties of some analytic p-valent functions, General Math. 18, no. 2 (2010), 173-184. | Zbl 1289.30065
Frasin, B. A., Neighborhoods of certain multivalent analytic functions with negative coefficients, Appl. Math. Comput. 193, no. 1 (2007), 1-6.[WoS] | Zbl 1193.30013
Goodman, A. W., Univalent functions and non-analytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. | Zbl 0166.33002
Kamali, M., Orhan, H., On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc. 41, no. 1 (2004), 53-71. | Zbl 1042.30005
Mahzoon, H., Latha, S., Neighborhoods of multivalent functions, Internat. J. Math. Analysis, 3, no. 30 (2009), 1501-1507. | Zbl 1195.30025
Orhan, H., Kiziltunc, H., A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput., 155 (1004), 521-530. | Zbl 1060.30018
Prajapat, J. K., Raina, R. K. and Srivastava, H. M., Inclusion and neighborhood properties of certain classes of multivalently analytic functions associated with convolution structure, JIPAM. J. Inequal. Pure Appl. Math. 8, no. 1 (2007), Article 7, 8 pp. (electronic).[WoS] | Zbl 1131.30006
Raina, R. K., Srivastava, H. M., Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure Appl. Math. 7, no. 1 (2006), 1-6. | Zbl 1131.30321
Ruscheweyh, St., Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527. | Zbl 0458.30008
Srivastava, H. M., Orhan, H., Coefficient inequalities and inclusion relations for some families of analytic and multivalent functions, Applied Math. Letters, 20, no. 6 (2007), 686-691.[Crossref][WoS] | Zbl 1111.30012
Srivastava, H. M., Suchithra, K., Stephen, B. A. and Sivasubramanian, S., Inclusion and neighborhood properties of certain subclasses of analytic and multivalent functions of complex order, JIPAM. J. Inequal. Pure Appl. Math. 7, no. 5 (2006), Article 191, 8 pp. (electronic). | Zbl 1131.30323