Suppose that {Xn, n ≥ 0} is a stationary Markov chain and V is a certain function on a phase space of the chain, called an observable. We say that the observable satisfies the central limit theorem (CLT) if [...] [...] converge in law to a normal random variable, as N → +∞. For a stationary Markov chain with the L2 spectral gap the theorem holds for all V such that V (X0) is centered and square integrable, see Gordin [7]. The purpose of this article is to characterize a family of observables V for which the CLT holds for a class of birth and death chains whose dynamics has no spectral gap, so that Gordin's result cannot be used and the result follows from an application of Kipnis-Varadhan theory.
@article{bwmeta1.element.doi-10_2478_v10062-011-0003-8, author = {Tymoteusz Chojecki}, title = {On the central limit theorem for some birth and death processes}, journal = {Annales UMCS, Mathematica}, volume = {65}, year = {2011}, pages = {21-31}, zbl = {1247.60104}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0003-8} }
Tymoteusz Chojecki. On the central limit theorem for some birth and death processes. Annales UMCS, Mathematica, Tome 65 (2011) pp. 21-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-011-0003-8/
Chen, M., Eigenvalues, Inequalities, and Ergodic Theory, Springer-Verlag, London, 2005.
Chung, K. L., Markov Chains with Stationary Transition Probabilities, 2nd edition, Springer-Verlag, Berlin, 1967. | Zbl 0146.38401
De Masi, A., Ferrari, P. A., Goldstein, S. and Wick, W. D., An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys. 55 (1989). | Zbl 0713.60041
Doeblin, W., Sur deux proble'mes de M. Kolmogoroff concernant les chaines dénombrables, Bull. Soc. Math. France 66 (1938), 210-220. | Zbl 0020.14604
Durrett, R., Probability Theory and Examples, Wadsworth Publishing Company, Belmont, 1996. | Zbl 1202.60001
Feller, W., An Introduction to Probability Theory and its Applications, Vol. II. Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. | Zbl 0219.60003
Gordin, M. I., The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), 739-741 (Russian). | Zbl 0212.50005
Kipnis, C., Varadhan, S. R. S., Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys. 104, no. 1 (1986), 1-19. | Zbl 0588.60058
Liggett, T., Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Grund. der Math. Wissen., 324, Springer-Verlag, Berlin, 1999. | Zbl 0949.60006
Menshikov, M.,Wade, A., Rate of escape and central limit theorem for the supercritical Lamperti problem, Stochastic Process. Appl. 120 (2010), 2078-2099.[WoS] | Zbl 1207.60032
Olla, S., Notes on Central Limits Theorems for Tagged Particles and Diffusions in Random Environment, Etats de la recherche: Milieux Aleatoires CIRM, Luminy, 2000.