We show the existence of invariant measures for Markov-Feller operators defined on completely regular topological spaces which satisfy the classical positivity condition.
@article{bwmeta1.element.doi-10_2478_v10062-010-0016-8, author = {Andrzej Wi\'snicki}, title = {On a nonstandard approach to invariant measures for Markov operators}, journal = {Annales UMCS, Mathematica}, volume = {64}, year = {2010}, pages = {73-80}, zbl = {1214.47014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0016-8} }
Andrzej Wiśnicki. On a nonstandard approach to invariant measures for Markov operators. Annales UMCS, Mathematica, Tome 64 (2010) pp. 73-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0016-8/
Albeverio, S., Fenstad, J. E., Høegh-Krohn, R. and Lindstrøm, T., Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando, 1986. | Zbl 0605.60005
Anderson, R. M., Star-finite representations of measure spaces, Trans. Amer. Math. Soc. 271 (1982), 667-687. | Zbl 0494.28005
Benci, V., Di Nasso, M. and Forti, M., The eightfold path to nonstandard analysis, Nonstandard Methods and Applications in Mathematics, Lecture Notes in Logic, 25, ASL, La Jolla, CA, 2006. | Zbl 1104.03061
Chang, C. C., Keisler, H. J., Model Theory, 3rd edition, North-Holland, Amsterdam, 1990.
Di Nasso, M., On the foundations of nonstandard mathematics, Math. Japonica 50 (1999), 131-160. | Zbl 0937.03075
Dudley, R. M., Real Analysis and Probability, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1989. | Zbl 0686.60001
Foguel, S. R., Existence of invariant measures for Markov processes. II, Proc. Amer. Math. Soc. 17 (1966), 387-389. | Zbl 0168.16405
Landers, D., Rogge, L., Universal Loeb-measurability of sets and of the standard part map with applications, Trans. Amer. Math. Soc. 304 (1987), 229-243. | Zbl 0633.28009
Lasota, A., From fractals to stochastic differential equations, Chaos - The Interplay Between Stochastic and Deterministic Behaviour, Karpacz '95, (Eds. P. Garbaczewski, M. Wolf and A. Weron), 235-255, Springer-Verlag, Berlin, 1995. | Zbl 0835.60058
Lasota, A., Mackey, M. C., Chaos, Fractals and Noise, Stochastic Aspects of Dynamics, Springer-Verlag, Berlin, 1994.
Lasota, A., Szarek, T., Lower bound technique in the theory of a stochastic differential equation, J. Differential Equations 231 (2006), 513-533. | Zbl 05115329
Lasota, A., Yorke, J. A., Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. | Zbl 0804.47033
Loeb, P. A., Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122. | Zbl 0312.28004
Loeb, P. A., Wolff, M. (Eds.), Nonstandard Analysis for the Working Mathematician, Kluwer Academic Publishers, Dordrecht, 2000. | Zbl 0972.03062
Oxtoby, J. C., Ulam, S., On the existence of a measure invariant under a transformation, Ann. Math. 40 (1939), 560-566. | Zbl 0021.41202
Sims, B., Ultra-techniques in Banach Space Theory, Queen's Papers in Pure and Applied Math., Vol. 60, Queen's University, Kingston, Ont., 1982.
Stettner, Ł., Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103-114. | Zbl 0815.60072
Szarek, T., The stability of Markov operators on Polish spaces, Studia Math. 143 (2000), 145-152. | Zbl 0964.60071
Szarek, T., Invariant measures for Markov operators with application to function systems, Studia Math. 154 (2003), 207-222. | Zbl 1036.47003
Szarek, T., Invariant measures for nonexpansive Markov operators on Polish spaces, Dissertationes Math. 415 (2003), 62 pp. | Zbl 1051.37005