Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function
G. Murugusundaramoorthy ; K. Uma
Annales UMCS, Mathematica, Tome 64 (2010), p. 61-72 / Harvested from The Polish Digital Mathematics Library

Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by TSμ/b (α, β, γ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class TSμ/b (α, β, γ). In particular, we obtain integral means inequalities for the function f(z) belongs to the class TSμ/b (α, β, γ) in the unit disc.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:267929
@article{bwmeta1.element.doi-10_2478_v10062-010-0015-9,
     author = {G. Murugusundaramoorthy and K. Uma},
     title = {Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function},
     journal = {Annales UMCS, Mathematica},
     volume = {64},
     year = {2010},
     pages = {61-72},
     zbl = {1213.30036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0015-9}
}
G. Murugusundaramoorthy; K. Uma. Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function. Annales UMCS, Mathematica, Tome 64 (2010) pp. 61-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0015-9/

Alexander, J. W., Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17 (1915), 12-22. | Zbl 45.0672.02

Altintas, O., Ozkan, O. and Srivastava, H. M., Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), 63-67.[Crossref] | Zbl 0955.30015

Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. | Zbl 0172.09703

Choi, J., Srivastava, H. M., Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput. 170 (2005), 399-409. | Zbl 1082.11052

Ferreira, C., López, J. L., Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl. 298 (2004), 210-224. | Zbl 1106.11034

Flet, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765[Crossref] | Zbl 0246.30031

Garg, M., Jain, K. and Srivastava, H. M., Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17 (2006), 803-815.[Crossref] | Zbl 1184.11005

Goodman, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.[Crossref] | Zbl 0166.33002

Goodman, A. W., On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92. | Zbl 0744.30010

Goodman, A. W., On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370. | Zbl 0726.30013

Jung, I. B., Kim, Y. C. and Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147. | Zbl 0774.30008

Kanas, S., Wiśniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.[Crossref] | Zbl 0944.30008

Kanas, S., Wiśniowska, A., Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45(4) (2000), 647-657. | Zbl 0990.30010

Kanas, S., Srivastava, H. M., Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct. 9(2) (2000), 121-132.[Crossref] | Zbl 0959.30007

Kanas, S., Yaguchi, T., Subclasses of k-uniformly convex and starlike functions defined by generalized derivative. II, Publ. Inst. Math. (Beograd) (N.S.) 69(83) (2001), 91-100. | Zbl 1003.30010

Lin, S.-D., Srivastava, H. M., Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), 725-733. | Zbl 1078.11054

Lin, S.-D., Srivastava, H. M. and Wang, P.-Y., Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17 (2006), 817-827.[Crossref] | Zbl 1172.11026

Littlewood, J. E., On inequalities in theory of functions, Proc. London Math. Soc. 23 (1925), 481-519.[Crossref] | Zbl 51.0247.03

Murugusundaramoorthy, G., Srivastava H.M., Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5(2) (2004), Art. 24, 1-8. | Zbl 1051.30017

Prajapat, J. K., Goyal, S. P., Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3 (2009), 129-137.[Crossref] | Zbl 1160.30325

Râducanu, D., Srivastava, H. M., A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transform. Spec. Funct. 18 (2007), 933-943.[WoS][Crossref] | Zbl 1130.30003

Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196. | Zbl 0805.30012

Rønning, F., Integral representations for bounded starlike functions, Ann. Polon. Math. 60 (1995), 289-297. | Zbl 0818.30008

Ruscheweyh, S., Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527.[Crossref] | Zbl 0458.30008

Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.[Crossref] | Zbl 0311.30007

Silverman, H., Integral means for univalent functions with negative coefficients, Houston J. Math. 23 (1997), 169-174. | Zbl 0889.30010

Srivastava, H. M., Attiya, A. A., An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transform. Spec. Funct. 18 (2007), 207-216.[Crossref][WoS] | Zbl 1112.30007

Srivastava, H. M., Choi, J., Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001. | Zbl 1014.33001