We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevič type in the open unit disk. By using Jack's lemma, sufficient conditions for this type of operator are also discussed.
@article{bwmeta1.element.doi-10_2478_v10062-010-0014-x, author = {Rabha Ibrahim and Maslina Darus and Nikola Tuneski}, title = {On subordination for classes of non-Bazilevi\v c type}, journal = {Annales UMCS, Mathematica}, volume = {64}, year = {2010}, pages = {49-60}, zbl = {1213.30028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0014-x} }
Rabha Ibrahim; Maslina Darus; Nikola Tuneski. On subordination for classes of non-Bazilevič type. Annales UMCS, Mathematica, Tome 64 (2010) pp. 49-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0014-x/
Darus, M., Ibrahim, R. W., Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math. 29(4) (2008), 221-229. | Zbl 1166.30302
Ibrahim, R. W., Darus, M., On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. (Ruse) 2(56) (2008), 2785-2794. | Zbl 1187.30018
Ibrahim, R. W., Darus, M., Subordination for new classes of non-Bazilevič type, UNRI-UKM Symposium, KE-4 (2008).
Ibrahim, R. W., Darus, M., Differential subordination results for new classes of the family ε (Φ, Ψ), JIPAM. J. Ineq. Pure Appl. Math. 10(1) (2009), Art. 8, 9 pp.
Jack, I. S., Functions starlike and convex of order k, J. London Math. Soc. 3 (1971), 469-474.[Crossref] | Zbl 0224.30026
Miller, S. S., Mocanu, P. T., Differential Subordinantions. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993. | Zbl 0789.26002
Obradovič, M., A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329-335. | Zbl 0908.30009
Raina, R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transform. Spec. Funct. 5 (1997), 247-260.[Crossref] | Zbl 0907.30013
Raina, R. K., Srivastava, H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl. 32 (1996), 13-19.[Crossref] | Zbl 0867.30015
Shanmugam, T. N., Ravichangran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3(1) (2006), 1-11.
Srivastava, H. M., Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989. | Zbl 0683.00012
Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992. | Zbl 0976.00007
Tuneski, N., Darus, M., Fekete-Szegö functional for non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 18(2) (2002), 63-65. | Zbl 1017.30012
Wang, Z., Gao, C. and Liao, M., On certain generalized class of non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 21(2) (2005), 147-154. | Zbl 1092.30032