On subordination for classes of non-Bazilevič type
Rabha Ibrahim ; Maslina Darus ; Nikola Tuneski
Annales UMCS, Mathematica, Tome 64 (2010), p. 49-60 / Harvested from The Polish Digital Mathematics Library

We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevič type in the open unit disk. By using Jack's lemma, sufficient conditions for this type of operator are also discussed.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:268288
@article{bwmeta1.element.doi-10_2478_v10062-010-0014-x,
     author = {Rabha Ibrahim and Maslina Darus and Nikola Tuneski},
     title = {On subordination for classes of non-Bazilevi\v c type},
     journal = {Annales UMCS, Mathematica},
     volume = {64},
     year = {2010},
     pages = {49-60},
     zbl = {1213.30028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0014-x}
}
Rabha Ibrahim; Maslina Darus; Nikola Tuneski. On subordination for classes of non-Bazilevič type. Annales UMCS, Mathematica, Tome 64 (2010) pp. 49-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0014-x/

Darus, M., Ibrahim, R. W., Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math. 29(4) (2008), 221-229. | Zbl 1166.30302

Ibrahim, R. W., Darus, M., On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. (Ruse) 2(56) (2008), 2785-2794. | Zbl 1187.30018

Ibrahim, R. W., Darus, M., Subordination for new classes of non-Bazilevič type, UNRI-UKM Symposium, KE-4 (2008).

Ibrahim, R. W., Darus, M., Differential subordination results for new classes of the family ε (Φ, Ψ), JIPAM. J. Ineq. Pure Appl. Math. 10(1) (2009), Art. 8, 9 pp.

Jack, I. S., Functions starlike and convex of order k, J. London Math. Soc. 3 (1971), 469-474.[Crossref] | Zbl 0224.30026

Miller, S. S., Mocanu, P. T., Differential Subordinantions. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993. | Zbl 0789.26002

Obradovič, M., A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329-335. | Zbl 0908.30009

Raina, R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transform. Spec. Funct. 5 (1997), 247-260.[Crossref] | Zbl 0907.30013

Raina, R. K., Srivastava, H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl. 32 (1996), 13-19.[Crossref] | Zbl 0867.30015

Shanmugam, T. N., Ravichangran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3(1) (2006), 1-11.

Srivastava, H. M., Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989. | Zbl 0683.00012

Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992. | Zbl 0976.00007

Tuneski, N., Darus, M., Fekete-Szegö functional for non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 18(2) (2002), 63-65. | Zbl 1017.30012

Wang, Z., Gao, C. and Liao, M., On certain generalized class of non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 21(2) (2005), 147-154. | Zbl 1092.30032