In this paper we give new estimates for the Lipschitz constants of n-periodic mappings in Hilbert spaces, in order to assure the existence of fixed points and retractions on the fixed point set.
@article{bwmeta1.element.doi-10_2478_v10062-010-0013-y, author = {V\'\i ctor Garc\'\i a and Helga Nathansky}, title = {Fixed points of periodic mappings in Hilbert spaces}, journal = {Annales UMCS, Mathematica}, volume = {64}, year = {2010}, pages = {37-48}, zbl = {1220.47073}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0013-y} }
Víctor García; Helga Nathansky. Fixed points of periodic mappings in Hilbert spaces. Annales UMCS, Mathematica, Tome 64 (2010) pp. 37-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0013-y/
Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. | Zbl 0708.47031
Goebel, K., Złotkiewicz, E., Some fixed point theorems in Banach spaces, Colloq. Math. 23 (1971), 103-106. | Zbl 0223.47022
Górnicki, J., Pupka, K., Fixed points of rotative mappings in Banach spaces, J. Nonlinear Convex Anal. 6(2) (2005), 217-233. | Zbl 1093.47051
Kaczor, W., Koter-Mórgowska M., Rotative mappings and mappings with constant displacement, Handbook of Metric Fixed Point Theory, Kluwer Academic Publisher, Dordrecht, 2001, 323-337. | Zbl 1032.47031
Koter-Mórgowska, M., Rotative mappings in Hilbert space, J. Nonlinear Convex Anal. 1(3) (2000), 295-304. | Zbl 0980.47045