We consider circular annuli with Poncelet's porism property. We prove two identities which imply Chapple's, Steiner's and other formulas. All porisms can be expressed in the form in which elliptic functions are not used.
@article{bwmeta1.element.doi-10_2478_v10062-010-0011-0, author = {Waldemar Cie\'slak and El\.zbieta Szczygielska}, title = {On Poncelet's porism}, journal = {Annales UMCS, Mathematica}, volume = {64}, year = {2010}, pages = {21-28}, zbl = {1220.53007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0011-0} }
Waldemar Cieślak; Elżbieta Szczygielska. On Poncelet's porism. Annales UMCS, Mathematica, Tome 64 (2010) pp. 21-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0011-0/
Bos, H. J. M., Kers, C., Dort, F. and Raven, D. W., Poncelet's closure theorem, Expo. Math. 5 (1987) 289-364. | Zbl 0633.51014
Cieślak, W., Szczygielska, E., Circuminscribed polygons in a plane annulus, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 49-53. | Zbl 1187.53002
Kerawala, S. M., Poncelet porism in two circles, Bull. Calcutta Math. Soc. 39 (1947), 85-105. | Zbl 0029.22601
Weisstein, E. W., Poncelet's Porism, From Math World - A Wolfram Web Resource.