Let X ⊂ Pn be an integral and non-degenerate m-dimensional variety defined over R. For any P ∈ Pn(R) the real X-rank r x,R(P) is the minimal cardinality of S ⊂ X(R) such that P ∈ . Here we extend to the real case an upper bound for the X-rank due to Landsberg and Teitler.
@article{bwmeta1.element.doi-10_2478_v10062-010-0010-1, author = {Edoardo Ballico}, title = { On the real X -ranks of points of P n (R) with respect to a real variety X [?] P n }, journal = {Annales UMCS, Mathematica}, volume = {64}, year = {2010}, pages = {15-19}, zbl = {1209.14042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0010-1} }
Edoardo Ballico. On the real X -ranks of points of P n (R) with respect to a real variety X ⊂ P n . Annales UMCS, Mathematica, Tome 64 (2010) pp. 15-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0010-1/
Albera, L., Chevalier, P., Comon, P. and Ferreol, A., On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53(4) (2005), 1254-1271.
Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves. I, Springer-Verlag, New York, 1985. | Zbl 0559.14017
Ballico, E., Ranks of subvarieties of Pn over non-algebraically closed fields, Int. J. Pure Appl. Math. 61(1) (2010), 7-10. | Zbl 1203.14061
Ballico, E., Subsets of the variety X ⊂ Pn computing the X-rank of a point of Pn, preprint.
Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34-55.[WoS] | Zbl 1211.14057
Bochnak, J., Coste, M. and Roy, F.-M., Real Algebraic Geometry, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, Springer-Verlag, Berlin, 1998.
Buczyński, J., Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, arXiv:0909.4262v1 [math. AG].[WoS] | Zbl 1268.15024
Comas, G., Seiguer, M., On the rank of a binary form, arXiv:math. AG/0112311.[WoS] | Zbl 1211.14059
Comon, P., Golub, G., Lim, L.-H. and Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30(3) (2008), 1254-1279. | Zbl 1181.15014
Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
Landsberg, J. M., Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339-366.[WoS] | Zbl 1196.15024
Lang, S., Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.