On the order of starlikeness and convexity of complex harmonic functions with a two-parameter coefficient condition
Agnieszka Sibelska
Annales UMCS, Mathematica, Tome 64 (2010), p. 81-91 / Harvested from The Polish Digital Mathematics Library

The article of J. Clunie and T. Sheil-Small [3], published in 1984, intensified the investigations of complex functions harmonic in the unit disc Δ. In particular, many papers about some classes of complex mappings with the coefficient conditions have been published. Consideration of this type was undertaken in the period 1998-2004 by Y. Avci and E. Złotkiewicz [2], A. Ganczar [5], Z. J. Jakubowski, G. Adamczyk, A. Łazińska and A. Sibelska [1], [8], [7], H. Silverman [12] and J. M. Jahangiri [6], among others. This work continues the investigations described in [7]. Our results relate primarily to the order of starlikeness and convexity of functions of the aforementioned classes.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:268102
@article{bwmeta1.element.doi-10_2478_v10062-010-0007-9,
     author = {Agnieszka Sibelska},
     title = {On the order of starlikeness and convexity of complex harmonic functions with a two-parameter coefficient condition},
     journal = {Annales UMCS, Mathematica},
     volume = {64},
     year = {2010},
     pages = {81-91},
     zbl = {1232.30015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0007-9}
}
Agnieszka Sibelska. On the order of starlikeness and convexity of complex harmonic functions with a two-parameter coefficient condition. Annales UMCS, Mathematica, Tome 64 (2010) pp. 81-91. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0007-9/

Adamczyk, G., Łazińska, A., On some generalization of coefficient conditions for complex harmonic mappings, Demonstratio Math. 38 (2) (2004), 317-326. | Zbl 1071.30004

Avci, Y., Złotkiewicz E., On harmonic univalent mappings, Ann. Univ. Mariae Curie-Skłodowska Sec. A. 44 (1) (1990), 1-7.

Clunie, J., Sheil-Small, T., Harmonic univalent mappings, Ann. Acad. Sci. Fenn., Ser. A. I. Math., 9 (1984), 3-25. | Zbl 0506.30007

Duren, P., Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004. | Zbl 1055.31001

Ganczar, A., On harmonic univalent functions with small coefficients, Demonstratio Math. 34 (3) (2001), 549-558. | Zbl 0988.30009

Jahangiri, J. M., Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999), 470-477. | Zbl 0940.30003

Jakubowski, J. Z., Łazińska, A. and Sibelska, A., On some properties of complex harmonic mappings with a two-parameter coefficient condition, Math. Balkanica, New Ser. 18 (2004), 313-319. | Zbl 1094.30018

Łazińska, A., On complex mappings in the unit disc with some coefficient conditions, Folia Sci. Univ. Techn. Resoviensis 199 (26) (2002), 107-116. | Zbl 1196.30011

Mocanu, S. S., Miller, P. T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York and Basel, 2000. | Zbl 0954.34003

Pinchuk, B., Starlike and convex functions of order α, Duke Math. J. 35 (4) (1968), 721-734. | Zbl 0167.36101

Robertson, M., On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408. | Zbl 62.0373.05

Silverman, H., Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283-289. | Zbl 0908.30013