Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ := {z ∈ C : |z| < 1}, normalized by f(0) = f'(0) - 1 = 0 and such that Im z Im f(z) ≥ 0 for z ∈ Δ. Moreover, let us denote: T(2) := {f ∈ T : f(z) = -f(-z) for z ∈ Δ} and TM, g := {f ∈ T : f ≺ Mg in Δ}, where M > 1, g ∈ T ∩ S and S consists of all analytic functions, normalized and univalent in Δ.We investigate classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes {f ∈ T : f < Mg in Δ}, where M > 1, g ∈ T, which we denote by TM, g. Furthermore, we broaden the class TM, g for the case M ∈ (0, 1) in the following way: TM, g = {f ∈ T : |f(z)| ≥ M|g(z)| for z ∈ Δ}, g ∈ T.
@article{bwmeta1.element.doi-10_2478_v10062-010-0006-x, author = {Leopold Koczan and Katarzyna Tr\k abka-Wi\k ec\l aw}, title = {Subclasses of typically real functions determined by some modular inequalities}, journal = {Annales UMCS, Mathematica}, volume = {64}, year = {2010}, pages = {75-80}, zbl = {1213.30031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0006-x} }
Leopold Koczan; Katarzyna Trąbka-Więcław. Subclasses of typically real functions determined by some modular inequalities. Annales UMCS, Mathematica, Tome 64 (2010) pp. 75-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0006-x/
Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
Goodman, A. W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.
Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 95-101.
Koczan, L., Szapiel, W., Extremal problems in some classes of measures (IV). Typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 55-68. | Zbl 0743.30023
Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 103-112. | Zbl 1010.30019
Rogosinski, W. W., Über positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, Math. Z. 35 (1932), 93-121 (German). | Zbl 0003.39303