In this paper we consider a class of univalent orientation-preserving harmonic functions defined on the exterior of the unit disk which satisfy the condition [...] . We are interested in finding radius of univalence and convexity for such class and we find extremal functions. Convolution, convex combination, and explicit quasiconformal extension for this class are also determined.
@article{bwmeta1.element.doi-10_2478_v10062-010-0005-y, author = {Jaros\l aw Widomski and Magdalena Gregorczyk}, title = {Harmonic mappings in the exterior of the unit disk}, journal = {Annales UMCS, Mathematica}, volume = {64}, year = {2010}, pages = {63-73}, zbl = {1213.30042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0005-y} }
Jarosław Widomski; Magdalena Gregorczyk. Harmonic mappings in the exterior of the unit disk. Annales UMCS, Mathematica, Tome 64 (2010) pp. 63-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0005-y/
Hengartner W., Schober G., Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
Jahangiri, Jay M., Harmonic meromorphic starlike functions, Bull. Korean Math. Soc. 37 (2000), No. 2, 291-301. | Zbl 0960.30010
Jahangiri, Jay M., Silverman H., Meromorphic univalent harmonic functions with negative coefficients, Bull. Korean Math. Soc. 36 (1999), No. 4, 763-770. | Zbl 0955.30011
Lehto O., Virtanen K. I., Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin-Heidelberg-New York, Second Edition, 1973. | Zbl 0267.30016
Pommerenke Ch., Univalent Functions, Vandenhoeck & Ruprecht in Göttingen, 1975.
Sheil-Small T., Complex Polynomials, Cambridge University Press, 2002.