Harmonic mappings in the exterior of the unit disk
Jarosław Widomski ; Magdalena Gregorczyk
Annales UMCS, Mathematica, Tome 64 (2010), p. 63-73 / Harvested from The Polish Digital Mathematics Library

In this paper we consider a class of univalent orientation-preserving harmonic functions defined on the exterior of the unit disk which satisfy the condition [...] . We are interested in finding radius of univalence and convexity for such class and we find extremal functions. Convolution, convex combination, and explicit quasiconformal extension for this class are also determined.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:267959
@article{bwmeta1.element.doi-10_2478_v10062-010-0005-y,
     author = {Jaros\l aw Widomski and Magdalena Gregorczyk},
     title = {Harmonic mappings in the exterior of the unit disk},
     journal = {Annales UMCS, Mathematica},
     volume = {64},
     year = {2010},
     pages = {63-73},
     zbl = {1213.30042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0005-y}
}
Jarosław Widomski; Magdalena Gregorczyk. Harmonic mappings in the exterior of the unit disk. Annales UMCS, Mathematica, Tome 64 (2010) pp. 63-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0005-y/

Hengartner W., Schober G., Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.

Jahangiri, Jay M., Harmonic meromorphic starlike functions, Bull. Korean Math. Soc. 37 (2000), No. 2, 291-301. | Zbl 0960.30010

Jahangiri, Jay M., Silverman H., Meromorphic univalent harmonic functions with negative coefficients, Bull. Korean Math. Soc. 36 (1999), No. 4, 763-770. | Zbl 0955.30011

Lehto O., Virtanen K. I., Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin-Heidelberg-New York, Second Edition, 1973. | Zbl 0267.30016

Pommerenke Ch., Univalent Functions, Vandenhoeck & Ruprecht in Göttingen, 1975.

Sheil-Small T., Complex Polynomials, Cambridge University Press, 2002.