Horizontal lift of symmetric connections to the bundle of volume forms ν
Anna Gąsior
Annales UMCS, Mathematica, Tome 64 (2010), p. 45-61 / Harvested from The Polish Digital Mathematics Library

In this paper we present the horizontal lift of a symmetric affine connection with respect to another affine connection to the bundle of volume forms ν and give formulas for its curvature tensor, Ricci tensor and the scalar curvature. Next, we give some properties of the horizontally lifted vector fields and certain infinitesimal transformations. At the end, we consider some substructures of a F(3, 1)-structure on ν.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:267845
@article{bwmeta1.element.doi-10_2478_v10062-010-0004-z,
     author = {Anna G\k asior},
     title = {
      Horizontal lift of symmetric connections to the bundle of volume forms
      $\nu$
    },
     journal = {Annales UMCS, Mathematica},
     volume = {64},
     year = {2010},
     pages = {45-61},
     zbl = {1219.53017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0004-z}
}
Anna Gąsior. 
      Horizontal lift of symmetric connections to the bundle of volume forms
      ν
    . Annales UMCS, Mathematica, Tome 64 (2010) pp. 45-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0004-z/

do Carmo, M. P., Riemannian Geometry, Graduate Texts in Mathematics 166, Birkhäuser Boston Inc., Boston Ma., 1992.

Das, L. S., Complete lifts of a structure satisfying FK - (-1)K+1 = 0, Internat. J. Math. Math. Sci. 15 (1992), 803-808. | Zbl 0781.53026

Dhooghe, P. F., The T. Y. Thomas construction of projectively related manifolds, Geom. Dedicata, 55 (1995), 221-235. | Zbl 0839.53010

Dhooghe, P. F., Van Vlierden A., Projective geometry on the bundle of volume forms, J. Geom. 62 (1998), 66-83. | Zbl 1006.53014

Gąsior, A., Curvatures for horizontal lift of Riemannian metric, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 17-21. | Zbl 1136.53012

Ishihara, S., Yano, K., Structure defined by f satisfying f3+f = 0, Proc. U. S.-Japan Seminar in Differential Geometry (Kyoto, 1965) pp. 153-166 Nippon Hyoronsha, Tokyo, 1966.

Kobayashi. S., Nomizu, K., Foundations of Differential Geometry, John Wiley & Sons, New York-London, 1969. | Zbl 0175.48504

Molino, P., Riemannian Foliations, Progression Mathematics, 73, Birkhäuser Boston Inc., Boston Ma., 1988. | Zbl 0824.53028

Miernowski A., Mozgawa W., Horizontal Lift to the Bundle of Volume Forms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 69-75.

Norden, A. P., Spaces with Affine Connection, Izdat. Nauka, Moscow, 1976 (Russian). | Zbl 0925.53007

Radziszewski, K., π-geodesics and lines of shadow, Colloq. Math. 26 (1972), 157-163. | Zbl 0249.53010

Rompała, W., Liftings of π-conjugate connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A 32 (1978), 109-126. | Zbl 0466.53005

Schouten, J. A., Ricci-Calculus, 2nd ed., Springer-Verlag, Berlin, Göttingen, Heidelberg, 1954.

Singh, K. D., Singh, R., Some f(3, ε)-structure manifolds, Demonstratio Math. 10 (1977), 637-645. | Zbl 0371.53030

Yamauchi, K., On Riemannian manifolds admitting infinitesimal projective transformations, Hokkaido Math. J. 16 (1987), 115-125. | Zbl 0629.53040

Yano, K., On structure defined by tensor field f of type (1, 1) satisfying f3 + f = 0, Tensor (N.S) 14 (1963), 99-109. | Zbl 0122.40705