Inclusion properties of certain subclasses of analytic functions defined by generalized Sălăgean operator
M. Aouf ; A. Shamandy ; A. Mostafa ; S. Madian
Annales UMCS, Mathematica, Tome 64 (2010), p. 17-26 / Harvested from The Polish Digital Mathematics Library

Let A denote the class of analytic functions with the normalization f(0) = f'(0) - 1 = 0 in the open unit disc U = {z : |z| < 1}. Set [...] and define ∞nλ, μ in terms of the Hadamard product [...] . In this paper, we introduce several subclasses of analytic functions defined by means of the operator Inλ, μ A → A, given by [...] . Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:268253
@article{bwmeta1.element.doi-10_2478_v10062-010-0002-1,
     author = {M. Aouf and A. Shamandy and A. Mostafa and S. Madian},
     title = {Inclusion properties of certain subclasses of analytic functions defined by generalized S\u al\u agean operator},
     journal = {Annales UMCS, Mathematica},
     volume = {64},
     year = {2010},
     pages = {17-26},
     zbl = {1213.30011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0002-1}
}
M. Aouf; A. Shamandy; A. Mostafa; S. Madian. Inclusion properties of certain subclasses of analytic functions defined by generalized Sălăgean operator. Annales UMCS, Mathematica, Tome 64 (2010) pp. 17-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-010-0002-1/

Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436. | Zbl 1072.30009

Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446. | Zbl 0172.09703

Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445. | Zbl 1035.30004

Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot-Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel, 1983.

Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-98. | Zbl 0965.30006

Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758. | Zbl 0158.07702

Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.

Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171. | Zbl 0439.30015

Owa, S., Srivastava, H. M., Some applications of the generalized Libera operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128. | Zbl 0583.30016

Sălăgean, G. S., Subclasses of univalent functions, Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992. | Zbl 0976.00007