Suppose that A is the family of all functions that are analytic in the unit disk Δ and normalized by the condition [...] For a given A ⊂ A let us consider the following classes (subclasses of A): [...] and [...] where [...] and S consists of all univalent members of A.In this paper we investigate the case A = τ, where τ denotes the class of all semi-typically real functions, i.e. [...] We study relations between these classes. Furthermore, we find for them sets of variability of initial coeffcients, the sets of local univalence and the sets of typical reality.
@article{bwmeta1.element.doi-10_2478_v10062-009-0013-y, author = {Leopold Koczan and Katarzyna Tr\k abka-Wi\k ec\l aw}, title = {On semi-typically real functions}, journal = {Annales UMCS, Mathematica}, volume = {63}, year = {2009}, pages = {139-148}, zbl = {1190.30016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0013-y} }
Leopold Koczan; Katarzyna Trąbka-Więcław. On semi-typically real functions. Annales UMCS, Mathematica, Tome 63 (2009) pp. 139-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0013-y/
Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
Goluzin, G. M., On typically real functions, Mat. Sb. 27(69) (1950), 201-218 (Russian).
Goodman, A. W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.
Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52, no. 2 (1998), 95-101.
Koczan, L., Szapiel, W., Extremal problems in some classes of measures. IV. Typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 55-68 (1991). | Zbl 0743.30023
Koczan, L., Zaprawa, P., Koebe domains for the classes of functions with ranges included in given sets, J. Appl. Anal. 14, no. 1 (2008), 43-52. | Zbl 1153.30012
Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52, no. 2 (1998), 103-112. | Zbl 1010.30019
Zaprawa, P., On typically real bounded functions with n-fold symmetry, Folia Scientiarum Universitatis Technicae Resoviensis, Mathematics 21, no. 162 (1997), 151-160. | Zbl 0888.30014