We consider the problem of univalence of the integral operator [...] Imposing on functions f(z), g(z) various conditions and making use of a close-to-convexity property of the operator, we establish many suffcient conditions for univalence. Our results extend earlier ones. Some questions remain open.
@article{bwmeta1.element.doi-10_2478_v10062-009-0011-0, author = {Szymon Ignaciuk}, title = {On univalence of an integral operator}, journal = {Annales UMCS, Mathematica}, volume = {63}, year = {2009}, pages = {117-132}, zbl = {1190.30015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0011-0} }
Szymon Ignaciuk. On univalence of an integral operator. Annales UMCS, Mathematica, Tome 63 (2009) pp. 117-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0011-0/
Dorff, M., Szynal, J., Linear invariance and integral operators of univalent functions, Demonstratio Math. 38 (2005), 47-57. | Zbl 1076.30022
Godula, J., On univalence of an certain integral, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 69-76 (1981).
Goodman, A. W., Univalent Functions, vol. II, Mariner Pub. Co., Inc., Tampa, Florida, 1983.
Merkes, E. P., Wright, D. J. On the univalence of a certain integral, Proc. Amer. Math. Soc. 27 (1971), 97-100. | Zbl 0221.30012
Royster, W. C., On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385-387. | Zbl 0193.37301
Wesolowski, A., Selected questions of p-valence and quasiconformal extensions of meromorphic functions in circular regions, Wydawnictwo UMCS, Lublin, 1990 (Polish).