The present paper is a continuation of the earlier work of the author. Here we study the rate of convergence of certain Durrmeyer type operators for function having derivatives of bounded variation.
@article{bwmeta1.element.doi-10_2478_v10062-009-0010-1, author = {Vijay Gupta}, title = {Certain family of Durrmeyer type operators}, journal = {Annales UMCS, Mathematica}, volume = {63}, year = {2009}, pages = {109-115}, zbl = {1191.41007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0010-1} }
Vijay Gupta. Certain family of Durrmeyer type operators. Annales UMCS, Mathematica, Tome 63 (2009) pp. 109-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0010-1/
Derriennic, M.-M., Sur l'approximation de functions integrable sur [0; 1] par des polynomes de Bernstein modifies, J. Approx. Theory 31 (1981), 323-343.
Durrmeyer, J. L., Une formule d'inversion de la Transformee de Laplace, Applications a la Theorie des Moments, These de 3e Cycle, Faculte des Sciences de l'Universite de Paris, 1967.
Gupta, V., López-Moreno, A. J. and Latorre-Palacios, J.-M., On simultaneous approximation of the Bernstein Durrmeyer operators, Appl. Math. Comput. 213 (1) (2009), 112-120.[WoS] | Zbl 1175.41018
Gupta, V., Maheshwari, P., Bézier variant of a new Durrmeyer type operators, Riv. Mat. Univ. Parma (6) 7 (2) (2003), 9-21. | Zbl 1050.41015
Srivastava, H. M., Gupta, V., A certain family of summation-integral type operators, Math. Comput. Modelling 37 (2003), 1307-1315.[WoS] | Zbl 1058.41015
Zeng, X. M., Chen, W., On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation, J. Approx. Theory 102 (2000), 1-12. | Zbl 0956.41013