The almost sure central limit theorems for certain order statistics of some stationary Gaussian sequences
Marcin Dudziński
Annales UMCS, Mathematica, Tome 63 (2009), p. 63-81 / Harvested from The Polish Digital Mathematics Library

Suppose that X1, X2, … is some stationary zero mean Gaussian sequence with unit variance. Let {kn} be a certain nondecreasing sequence of positive integers, [...] denote the kn largest maximum of X1, … Xn. We aim at proving the almost sure central limit theorems for the suitably normalized sequence [...] under certain additional assumptions on {kn} and the covariance function [...]

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:268257
@article{bwmeta1.element.doi-10_2478_v10062-009-0007-9,
     author = {Marcin Dudzi\'nski},
     title = {The almost sure central limit theorems for certain order statistics of some stationary Gaussian sequences},
     journal = {Annales UMCS, Mathematica},
     volume = {63},
     year = {2009},
     pages = {63-81},
     zbl = {1193.60040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0007-9}
}
Marcin Dudziński. The almost sure central limit theorems for certain order statistics of some stationary Gaussian sequences. Annales UMCS, Mathematica, Tome 63 (2009) pp. 63-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0007-9/

Csaki, E., Gonchigdanzan, K., Almost sure limit theorem for the maximum of stationary Gaussian sequences, Statist. Probab. Lett. 58 (2002), 195-203. | Zbl 1014.60031

Dudziński, M., An almost sure maximum limit theorem for certain class of dependent stationary Gaussian sequences, Demonstratio Math. 35 (4) (2002), 879-890. | Zbl 1011.60010

Leadbetter, M. R., Lindgren, G. and Rootzen, H., Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, Heidelberg, Berlin, 1983. | Zbl 0518.60021

Stadtmueller, U., Almost sure versions of distributional limit theorems for certain order statistics, Statist. Probab. Lett. 58 (2002), 413-426. | Zbl 1033.60042