Let A denote the class of analytic functions with normalization [...] in the open unit disk [...] Set [...] and define [...] in terms of the Hadamard product [...] In this paper, we introduce several new subclasses of analytic functions defined by means of the operator [...] [...] .Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.
@article{bwmeta1.element.doi-10_2478_v10062-009-0003-0, author = {Mohamed Aouf and Rabha El-Ashwah}, title = {Inclusion properties of certain subclass of analytic functions defined by multiplier transformations}, journal = {Annales UMCS, Mathematica}, volume = {63}, year = {2009}, pages = {29-38}, zbl = {1190.30012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0003-0} }
Mohamed Aouf; Rabha El-Ashwah. Inclusion properties of certain subclass of analytic functions defined by multiplier transformations. Annales UMCS, Mathematica, Tome 63 (2009) pp. 29-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0003-0/
Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.[Crossref] | Zbl 1072.30009
Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.[Crossref] | Zbl 0172.09703
Cătaş, A., On certain class of p-valent functions defined by new multiplier transformations, Proceedings Book of the International Symposium on Geometric Function Theory and Applications, August 20-24, 2007, TC Istanbul Kultur University, Turkey, 241-251.
Cho, N. E., Srivastava, H. M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37 (1-2) (2003), 39-49. | Zbl 1050.30007
Cho, N. E., Kim, T. H., Multiplier transformations and strongly close-to-convex functions, Bull. Korean. Math. Soc. 40 (3) (2003), 399-410. | Zbl 1032.30007
Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445. | Zbl 1035.30004
Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot-Bouquet differential subordination, General Inequalities, Vol. 3, Birkhäuser-Verlag, Basel, 1983, 339-348. | Zbl 0527.30008
Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-93.[Crossref] | Zbl 0965.30006
Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1956), 755-758. | Zbl 0158.07702
Liu, J. L., The Noor, integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441-447. | Zbl 1040.30005
Liu, J. L., Noor, K. I., Some properties of Noor integral operator, J. Nat. Geom. 21 (2002), 81-90. | Zbl 1005.30015
Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.
Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28, no. 2 (1981), 157-171. | Zbl 0439.30015
Noor, K. I., On new class of integral operator, J. Nat. Geom. 16 (1999), 71-80. | Zbl 0942.30007
Noor, K. I., Noor, M. A., On integral operator, J. Math. Anal. Appl. 238 (1999), 341-352. | Zbl 0934.30007
Owa, S., Srivastava, H. M., Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.[Crossref] | Zbl 0583.30016
Sălăgean, G. Ş., Subclasses of univalent functions, Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Springer-Verlag, Berlin, 1983, 362-372.
Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Theory, World Sci. Publ., River Edge, NJ, 1992. | Zbl 0976.00007
Uralegaddi, B. A., Somanatha, C., Certain classes of univalent functions, Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa), World Sci. Publ., River Edge, NJ, 1992, 371-374. | Zbl 0987.30508