In the present paper, the authors obtain sharp upper bounds for certain coefficient inequalities for linear combination of Mocanu α-convex p-valent functions. Sharp bounds for [...] and [...] are derived for multivalent functions.
@article{bwmeta1.element.doi-10_2478_v10062-009-0001-2, author = {Fatma Altunta\c s and Muhammet Kamali}, title = {On certain coefficient bounds for multivalent functions}, journal = {Annales UMCS, Mathematica}, volume = {63}, year = {2009}, pages = {1-16}, zbl = {1190.30010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0001-2} }
Fatma Altuntaş; Muhammet Kamali. On certain coefficient bounds for multivalent functions. Annales UMCS, Mathematica, Tome 63 (2009) pp. 1-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0001-2/
Ali, R. M., Ravichandran, V. and Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35-46.[WoS] | Zbl 1113.30024
Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. | Zbl 0165.09102
Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, Cambridge, MA, 1994, 157-169. | Zbl 0823.30007
Owa, S., Properties of certain integral operators, Southeast Asian Bull. Math. 24, no. 3 (2000), 411-419. | Zbl 0980.30011
Prokhorov, D. V., Szynal, J., Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125-143, 1984.
Ramachandran, C., Sivasubramanian, S. and Silverman, H., Certain coefficients bounds for p-valent functions, Int. J. Math. Math. Sci., vol. 2007, Art. ID 46576, 11 pp. | Zbl 1139.30307
Shanmugam, T. N., Owa, S., Ramachandran, C., Sivasubramanian, S. and Nakamura, Y., On certain coefficient inequalities for multivalent functions, J. Math. Inequal. 3 (2009), 31-41. | Zbl 1160.30332
Sălăgean, G. Ş., Subclasses of univalent functions, Complex Analysis - fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lectures Notes in Math., 1013, Springer-Verlag, Berlin, 1983, 362-372.