On certain coefficient bounds for multivalent functions
Fatma Altuntaş ; Muhammet Kamali
Annales UMCS, Mathematica, Tome 63 (2009), p. 1-16 / Harvested from The Polish Digital Mathematics Library

In the present paper, the authors obtain sharp upper bounds for certain coefficient inequalities for linear combination of Mocanu α-convex p-valent functions. Sharp bounds for [...] and [...] are derived for multivalent functions.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:268072
@article{bwmeta1.element.doi-10_2478_v10062-009-0001-2,
     author = {Fatma Altunta\c s and Muhammet Kamali},
     title = {On certain coefficient bounds for multivalent functions},
     journal = {Annales UMCS, Mathematica},
     volume = {63},
     year = {2009},
     pages = {1-16},
     zbl = {1190.30010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0001-2}
}
Fatma Altuntaş; Muhammet Kamali. On certain coefficient bounds for multivalent functions. Annales UMCS, Mathematica, Tome 63 (2009) pp. 1-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-009-0001-2/

Ali, R. M., Ravichandran, V. and Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35-46.[WoS] | Zbl 1113.30024

Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. | Zbl 0165.09102

Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, Cambridge, MA, 1994, 157-169. | Zbl 0823.30007

Owa, S., Properties of certain integral operators, Southeast Asian Bull. Math. 24, no. 3 (2000), 411-419. | Zbl 0980.30011

Prokhorov, D. V., Szynal, J., Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125-143, 1984.

Ramachandran, C., Sivasubramanian, S. and Silverman, H., Certain coefficients bounds for p-valent functions, Int. J. Math. Math. Sci., vol. 2007, Art. ID 46576, 11 pp. | Zbl 1139.30307

Shanmugam, T. N., Owa, S., Ramachandran, C., Sivasubramanian, S. and Nakamura, Y., On certain coefficient inequalities for multivalent functions, J. Math. Inequal. 3 (2009), 31-41. | Zbl 1160.30332

Sălăgean, G. Ş., Subclasses of univalent functions, Complex Analysis - fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lectures Notes in Math., 1013, Springer-Verlag, Berlin, 1983, 362-372.