In this paper, using techniques of value distribution theory, we give some uniqueness theorems for meromorphic mappings of Cm into CPn.
@article{bwmeta1.element.doi-10_2478_v10062-008-0014-2, author = {Si Quang and Tran Van Tan}, title = {Uniqueness problem of meromorphic mappings with few targets}, journal = {Annales UMCS, Mathematica}, volume = {62}, year = {2008}, pages = {123-142}, zbl = {1190.32012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0014-2} }
Si Quang; Tran Van Tan. Uniqueness problem of meromorphic mappings with few targets. Annales UMCS, Mathematica, Tome 62 (2008) pp. 123-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0014-2/
Aihara, Y., Finiteness theorem for meromorphic mappings, Osaka J. Math. 35 (1998), 593-61. | Zbl 0926.32022
Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, Nagoya Math. J. 181 (2006), 75-101. | Zbl 1111.32016
Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 217-242.[WoS] | Zbl 1126.32013
Dethloff, G., Tan, T. V., An extension of uniqueness theorems for meromorphic mappings, Vietnam J. Math. 34 (2006), 71-94. | Zbl 1117.32013
Fujimoto, H., The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23. | Zbl 0313.32005
Fujimoto, H., Nonintegrated defect relation for meromorphic maps of complete Kähler manifolds intoPN1 (C) X ··· X PNκ (C), Japan. J. Math. (N. S.) 11 (1985), 233-264.
Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131-152. | Zbl 0937.32010
Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J. 155 (1999), 161-188. | Zbl 0946.32008
Ji, S., Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math. 135 (1988), 323-348. | Zbl 0629.32022
Lang, S., Algebra, Third Edition, Addison-Wesley, 1993.
Nevanlinna, R., Einige Eideutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367-391. | Zbl 52.0323.03
Noguchi, J., Ochiai, T., Introduction to Geometric Function Theory in Several Complex Variables, Trans. Math. Monogr. 80, Amer. Math. Soc., Providence, Rhode Island, 1990. | Zbl 0713.32001
Ru, M., A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701-2707. | Zbl 0977.32013
Smiley, L., Geometric conditions for unicity of holomorphic curves, Contemp. Math. 25 (1983), 149-154. | Zbl 0571.32002
Thai, D. D., Quang, S. D., Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables, Internat. J. Math. 17 (2006), 1223-1257. | Zbl 1117.32014
Thai, D. D., Tan, T. V., Uniqueness problem of meromorphic mappings for moving hypersurfaces, preprint. | Zbl 1273.32025
Stoll, W., Introduction to value distribution theory of meromorphic maps, Complex analysis (Trieste, 1980), Lecture Notes in Math., 950, Springer, Berlin-New York, 1982, 210-359.
Stoll, W., Value distribution theory for meromorphic maps, Aspects of Mathematics, E 7 Friedr. Vieweg & Sohn, Braunschweig, 1985.
Stoll, W., On the propagation of dependences, Pacific J. of Math., 139 (1989), 311-337. | Zbl 0683.32017
Ye, Z., A unicity theorem for meromorphic mappings, Houston J. Math. 24 (1998), 519-531. | Zbl 0971.32008